Structural and magnetic studies of copper (II) complexes of verdazyl radicals

Joe B. Gilroy,^{*a*} Bryan D. Koivisto,^{*a*} Robert McDonald,^{*b*} Michael J. Ferguson,^{*b*} and Robin G. Hicks ^{**a*}

^a Department of Chemistry, University of Victoria, PO Box 3065, Victoria, BC, Canada, V8W 3V6. E-mail: rhicks@uvic.ca
 ^b Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2

Supplemental Information

CONTENTS

NMR spectra for compound 5	S2
EPR spectrum of compound 4	S4
Details of magnetic modeling for 4, 6, 8, and 9	S5
References	S7

Figure S1. ¹H NMR of **5** in *d6*-DMSO

Figure S2. ¹³C NMR of **5** in CDCl₃

Figure S3. EPR of **4** in CH₂Cl₂ at RT (g = 2.0037, $a_{N1} = 6.5$ G, $a_{N2} = 5.3$ G, $a_H = 5.3$ G)

Details of Magnetic Modeling:

Goodness of fit R =
$$\Sigma [\chi_{obs} - \chi_{calc}]^2 / \Sigma [\chi_{obs}]^2$$

Verdazyl (4)

The antiferromagnetic intermolecular interactions between radicals were modeled using the Bonner-Fisher chain model¹ based on the following Hamiltonian.

$$\mathbf{H} = -\mathbf{J}\Sigma\mathbf{S}_{\mathrm{rad}}\mathbf{S}_{\mathrm{rad}+1}$$

The magnetic susceptibility is thus given by:

$$\chi = \frac{Ng^2\beta^2}{kT} \frac{0.25 + 0.074975x + 0.075235x^2}{1.0 + 0.9931x + 0.172135x^2 + 0.757825x^3}$$

where x = |J|/kT

Fitting of χ with g = 2.00 fixed gave ρ = 0.95, J = -3.33 cm⁻¹ and R = 0.0011.

$Cu(2)Cl_{2}(6)$

The antiferromagnetic intramolecular interaction in complex 6 was modeled using the Bleaney-Bowers dimer model² based on the following Hamiltonian.

$$\mathbf{H} = -\mathbf{J}\mathbf{S}_{\mathrm{Cu}}\mathbf{S}_{\mathrm{rad}}$$

The magnetic susceptibility is thus given by:

$$\chi = \frac{2Ng^2\beta^2}{kT[3 + \exp(-J/kT)]}$$

The interdimer interactions observed in the crystal structure of $\mathbf{6}$ were accounted for using a molecular field correction.³

$$\chi' = \frac{\chi}{1 - (2zJ'/Ng^2\beta^2)\chi}$$

A term for a Curie-Weiss impurity was also incorporated to yield an expression similar to that found above. Fitting of χT with g = 2.1 fixed gave values $\rho = 0.97$, J = -203.99 cm⁻¹, 2zJ' = -520.95 cm⁻¹, and $\theta = -2.31$ K, R = 0.011.

Cu(pyvd)(hfac)₂ (8)

An analogous approach was taken to that of compound **6**. Fitting of χT with g = 2.1 fixed gave values $\rho = 0.99$, $J = 5.00 \text{ cm}^{-1}$, $2zJ' = -7.57 \text{ cm}^{-1}$, $\theta = 1.50 \text{ K}$, and R = 0.0011. The value of J was optimized by first fitting a truncated portion of the data, removing the high and low temperature linear portions of the data. It should be noted that the exact value of J has little impact on the overall curvature, and values between 2 and 10 cm⁻¹ can be used to model this data effectively.

Cu(NMe-imdvd)(hfac)₂ (9)

A four-spin model⁴ was employed based on the following spin arrangement:

$$S_{Cu1} \underbrace{J_2}_{Srad1} \underbrace{S_{rad1}}_{Srad2} \underbrace{J_1}_{Srad2} \underbrace{J_2}_{SCu2}$$

The corresponding Hamiltonian is as follows:

$$\mathbf{H} = -2\mathbf{J}_{1}\mathbf{S}_{rad1}\,\mathbf{S}_{rad2} - 2\mathbf{J}_{2}(\mathbf{S}_{rad1}\,\mathbf{S}_{Cu1} + \mathbf{S}_{rad2}\,\mathbf{S}_{Cu2})$$

The related expression for susceptibility is given by:

$$\chi = \frac{Ng^2\beta^2}{kT}\frac{A}{B}$$

 $A = 10exp(-E_1/kT) + 2exp(-E_2/kT) + 2exp(-E_3/kT) + 2exp(-E_4/kT)$

 $B = 5\exp(-E_1/kT) + 3[\exp(-E_2/kT) + \exp(-E_3/kT) + \exp(-E_4/kT)] + \exp(-E_5/kT) + \exp(-E_6/kT)$

$$E_{1} = -J_{2} - J_{1}/2$$

$$E_{2} = J_{2} - J_{1}/2$$

$$E_{3} = J_{1}/2 + (J_{2}^{2} + J_{1}^{2})^{1/2}$$

$$E_{4} = J_{1}/2 - (J_{2}^{2} + J_{1}^{2})^{1/2}$$

$$E_{5} = J_{2} + J_{1}/2 + (4J_{2}^{2} - 2J_{2}J_{1} + J_{1}^{2})^{1/2}$$

$$E_{6} = J_{2} + J_{1}/2 - (4J_{2}^{2} - 2J_{2}J_{1} + J_{1}^{2})^{1/2}$$

A second term was once again introduced in order to account for paramagnetic impurities displaying Curie-Weiss impurity. It should also be noted that our data was based on molecular units containing two spins rather than a true four spin system, therefore the expression for χ was multiplied by one half. The overall equation used to model susceptibility was:

$$\chi' = (\rho) \frac{Ng^2 \beta^2}{2kT} \frac{A}{B} + (1-\rho) \frac{2Ng^2 \beta^2}{k(T-\Theta)}$$

Fitting of χT with g = 2.1 fixed gave values $\rho = 0.95$, $J_1 = -39.51 \text{ cm}^{-1}$, $J_2 = 6.06 \text{ cm}^{-1}$, $\theta = 0.59 \text{ K}$, and R = 0.00058. The curvature from 25-150 K shows dependence on J_1 almost exclusively with the value of J_2 and θ having a larger influence on the low temperature data. It should be noted that J_2 has little impact on the overall curvature, and values between 2 and 10 cm⁻¹ can be used to model this data.

References

- 1. J.C. Bonner, M.E. Fisher, Phys. Rev. A, 1964, 135, 640.
- 2. B. Bleaney, K.D. Bowers, Proc. Roy. Soc.(London) Ser. A, 1952, 214, 451.
- 3. R. L. Carlin, Magnetochemistry, Springer-Verlag: New York, 1986; p133.
- Z. Liu, L. Li, D. Liao, Z. Jiang, S. Yan, Cryst. Growth Des., 2005, 5, 783.; Z. Liu, Z. Lu, D. Zhang, Z. Jiang, L. Li, C. Liu, D. Zhu., Inorg. Chem., 2004, 43, 6620.