Electronic Supporting Information for:

Chemoresponsive Viscosity Switching of a Metallo-Supramolecular Polymer Network Near the Percolation Threshold

David M. Loveless, Sung Lan Jeon, and Stephen L. Craig*

Department of Chemistry and Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC 27708-0346.

Synthesis and characterization. The detailed synthesis and characterization of 1,4-phenylene bridged bimetallic complexes **S6-S7** are reported elsewhere,¹ but they are reviewed here for convenience.

Materials and Methods. Dimethyl sulfoxide (DMSO) (Acros) and dichloromethane (Acros) were used as received. Solvents were dried and stored under nitrogen. Deuterated solvents, DMSO-*d*₆ and CDCl₃, were purchased from Cambridge Isotope Laboratories, Inc. ¹H NMR spectra were acquired using a Varian 400 MHz spectrometer. ¹³C NMR spectra were acquired at 100 MHz. Mass spectra were acquired by Georgy Dubay at Duke University. Elemental analysis data were obtained from M-H-W laboratories, Phoenix, AZ.

Synthesis. Compounds $S1^2$, $[PtCl_2(SEt_2)_2]^3$ and $[Pt(p-tolyl)_2(SEt_2)]_2^4$ were synthesized according to literature procedure.

C 1

1

Scheme S1. Synthesis of dibromo bimetallic pincer complexes S4 and S5.

Scheme S2. Conversion of dibromo pincer complexes in corresponding triflate salts.

1,4-Dibromo-{2,3,5,6-tetrakis(bromomethyl)}benzene, 1,4-C₆Br₂(CH₂Br)₄-2,3,5,6 (S2).

Compound $S2^{5a}$ was generated by a previously published process^{5b} used to make the 1,2,4,5-tetrakis-(bromomethyl)benzene. *N*-bromosuccinimide (12.816 g, 0.072 mol) was added to a stirred solution of S1 (2.920 g, 0.01 mol) in CHCl₃ (150 mL) at room temperature. The reaction mixture was heated to reflux and stirred for 5 hrs, at which time the product had precipitated. The reaction mixture was allowed to cool to room temperature, and the product was filtered and washed with cold dichloromethane (5 x 100 mL). The white solid was dried under vacuum. Yield 75% (4.560 g). ¹H NMR (CDCl₃) δ 4.84 (s, 8H, PhCH₂). ¹³C NMR (CDCl₃) δ 153.1, 128.4, 30.7. HRMS (FAB) *m/z* 607.5659 (M ⁺, C₁₀H₈Br₆, calcd. 607.5665). The resulting white solid was used in the subsequent amination without further purification.

1,4-Dibromo-[2,3,5,6-tetrakis{(diethylamino)methy}]benzene, 1,4-C₆Br₂(CH₂NEt₂)₄-2,3,5,6

(S3a). Compounds S3a was generated using a related, previously reported procedure.⁶ Compound S2 (6.080 g, 0.01 mol) was added to a stirred solution of diethylamine (21.942 g, 0.30 mol) in THF (60 mL) at -10 °C. The reaction mixture was allowed to warm to room temperature over a period of 1h and then heated to 55 °C for 5 min. The reaction mixture was allowed to cool to room temperature, and all volatiles were removed under vacuum to leave a white solid residue. This residue was suspended in aqueous NaOH (100 mL, 2 M) and with vigorous stirring of the mixture Et₂O (300 mL) was added. Stirring was stopped, and from the resulting two-layer system the organic layer was collected and the water layer extracted with Et₂O (200 mL). The combined organic layer and extracts were washed with saturated aqueous NaCl (100 mL) and dried with MgSO₄. The solution was filtered and reduced to volume under vacuum. The resulting white solid was dried under vacuum. Yield 91% (5.246 g). ¹H NMR (CDCl₃) δ 4.11 (s, 8H, PhCH₂), 2.52 (q, *J*=7.1 Hz, 16H, NCH₂), 0.94 (t, *J* = 7.1 Hz, 24H, CH₃). ¹³C NMR (CDCl₃) δ 140.1, 132.6, 55.7, 45.8, 11.8. HRMS (FAB) *m*/*z* 577.2308 ([M+H]⁺, C₂₆H₄₉N₄Br₂, calcd. 577.2304). The product was carried on to subsequent metallation products without further purification.

1,4-Dibromo-[2,3,5,6-tetrakis{methylpiperidyl}]benzene, 1,4-C₆Br₂[CH₂N(-CH₂)₅]₄-2,3,5,6 (S3b). Compound S3b was synthesized according to the procedure for S3a. The resulting white solid was dried under vacuum. Yield 92% (5.746 g). ¹H NMR (CDCl₃) δ 4.07 (s, 8H, PhCH₂), 2.40 (s, 16H, NCH₂), 1.46-1.39 (m, 24H, CH₂). ¹³C NMR (CDCl₃) δ 139.3, 132.8, 59.6, 54.7, 26.4, 24.7. HRMS (FAB) *m/z* 625.2305 ([M+H] ⁺, C₃₀H₄₉N₄Br₂, calcd. 625.2295). The product was used in the synthesis of the Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2006

metallated products without further purification.

[2,3,5,6-Tetrakis{(diethylamino)methy}phenylene-1,4-bis{bromopalladium(II)}], [(PdBr)₂-1,4-{C₆(CH₂NEt₂)₄-2,3,5,6}] (S4a). Compound S3a (1.441 g, 2.50 mmol) was dissolved in dry toluene (50 mL). Pd₂(dba)₃ (2.562 g, 2.80 mmol) was added, and the solution was stirred and heated to 90 °C for 36 hrs. The solution was then filtered through celite and washed with toluene until the yellow color on celite was washed through. The celite was then washed with hot chloroform (1 L) into a clean flask. The chloroform solution was reduced to volume under vacuum, and the product (yellow solid) was purified using flash chromatography (SiO₂, CHCl₃:CH₃OH = 97:3). The resulting yellow solid was dried under vacuum. Yield 94% (1.855 g). ¹H NMR (CDCl₃) δ 3.73 (s, 8H, PhCH₂), 3.45(dq, *J* = 12.0 Hz, 7.0 Hz, 8H, NCH₂), 2.62 (dq, *J* = 12.0 Hz, 7.0 Hz, 8H, NCH₂), 1.57 (t, *J* = 7.0 Hz, 24H, CH₃). ¹³C NMR (CD₂Cl₂) δ 151.0, 138.3, 65.7, 59.2, 14.5. Anal. Calcd for C₂₆H₄₈Br₂N₄Pt₂: C, 39.56; H, 6.13; N, 7.10. Found; C, 39.73; H, 6.11; N, 7.11. HRMS (FAB) *m*/*z* 706.1153 ([M-Br] ⁺, C₂₆H₄₈N₄BrPd₂, calcd. 706.1148).

[2,3,5,6-Tetrakis{(dimethylamino)methy}phenylene-1,4-bis{bromopalladium(II)}], [(PdBr)₂-1,4-{C₆(CH₂NMe₂)₄-2,3,5,6}] (S4b). Compound S4b was synthesized according to the procedure for S4a. The resulting white solid was dried under vacuum. Yield 83% (1.405 g). ¹H NMR (CDCl₃) δ 3.79 (s, 8H, PhCH₂), 2.92 (s, 24H, NCH₃). ¹³C NMR and mass spectra could not be obtained due to poor solubility, but the structure was confirmed from its subsequent conversion to S6b. The product was converted directly into the triflated product, S6b, without further purification.

[2,3,5,6-Tetrakis{(diethylamino)methy}phenylene-1,4-bis{bromoplatinum(II)}], [(PtBr)₂-1,4-{C₆(CH₂NEt₂)₄-2,3,5,6}] (S5a). Compound S3a (2.000 g, 3.47 mmol) was dissolved in dry toluene (75 mL). [Pt(p-tolyl)₂(SEt₂)]₂ (4.541 g, 4.82 mmol) was added and the solution was stirred and heated to 90 °C for 36 hrs. The solution was then filtered through celite and washed with toluene until the yellow color on celite was washed through. The celite was then washed with dichloromethane (1 L) into a clean flask, and the dichloromethane solution was reduced to volume under vacuum. The product was purified using flash chromatography (SiO₂, CHCl₃:CH₃OH = 97:3). The resulting yellow solid was dried under vacuum. Yield 72% (2.415 g). ¹H NMR (CDCl₃) δ 3.81 (s, 8H, ³*J*_{Pt-H} = 32.8 Hz, PhCH₂), 3.51 (dq, *J* = 12.1 Hz, 7.1 Hz, 8H, NCH₂), 2.84 (dq, *J* = 12. 1 Hz, 7.1 Hz, 8H, NCH₂), 1.49 (t, *J* = 7.1 Hz, 24H, CH₃). ¹³C NMR (CDCl₃) δ 133.2, 68.7, 60.6, 13.7. Anal. Calcd for C₂₆H₄₈Br₂N₄Pt₂: C, 32.31; H, 5.01; N, 5.80. Found; C, 32.26; H, 4.93; N, 5.74. HRMS (FAB) *m/z* 884.2305 ([M-Br] ⁺, C₂₆H₄₈N₄BrPt₂, calcd. 884.2337).

[2,3,5,6-Tetrakis{(dimethylamino)methy}phenylene-1,4-bis{bromoplatinum(II)}], [(PtBr)₂-1,4-{C₆(CH₂NMe₂)₄-2,3,5,6}] (S5b). Compound S5b was synthesized according to the procedure for S5a. The resulting white solid was dried under vacuum. Yield 81% (2.401 g). ¹H NMR (CDCl₃) δ 3.85 (s, 8H, PhCH₂, ³J_{Pt-H} not observed due to very poor S/N ratio), 3.07 (s, 24H, NCH₃, ³J_{Pt-H} not observed due to very poor S/N ratio). ¹³C NMR and mass spectra could not be obtained due to poor solubility, but the structure was confirmed from its subsequent conversion to S7b. The product was converted directly into the triflated product, S7b, without further purification.

[2,3,5,6-Tetrakis{(diethylamino)methy}phenylene-1,4-bis(palladiumtrifluoromethanesulfonate)], [(PdOTf)₂-1,4-{C₆(CH₂NEt₂)₄-2,3,5,6}] (S6a). Compound S4a (0.553 g, 0.70 mmol) was dissolved in dichloromethane (75 mL), and the reaction flask was wrapped by aluminum foil. AgOTf (0.389 g, 1.50 mmol) was added to the reaction mixture at 0 °C. The solution was stirred for 24 hrs at room temperature and, after removing the aluminum foil, stirred for an additional 4 hrs. The reaction mixture was filtered, and the solid washed with dichloromethane (3 x 100 mL), and the solvent was evaporated. The resulting yellow solid was dried under vacuum. Yield 96% (0.623 g). ¹H NMR (CDCl₃) δ 3.72 (s, 8H, PhCH₂), 3.22 (dq, *J* = 12.6 Hz, 7.1 Hz, 8H, NCH₂), 2.65 (dq, *J* = 12.6 Hz, 7.1 Hz, 8H, NCH₂), 1.57 (t, *J* = 7.1 Hz, 24H, CH₃). ¹H NMR (CD₃OD) δ 3.90 (s, 8H, PhCH₂), 3.00 (dq, *J* = 12.8 Hz, 7.0 Hz, 8H, NCH₂), 2.74 (dq, *J* = 12.8 Hz, 7.0 Hz, 8H, NCH₂), 1.54 (t, *J* = 7.0 Hz, 24H, CH₃). ¹³C NMR (CDCl₃) δ 144.9, 137.8, 64.6, 57.4, 14.0. ¹³C NMR (CD₃OD) δ 146.3, 139.4, 65.4, 58.4, 14.4. MS (FAB) *m/z* 928 ([M+1]⁺, 3), 926 ([M-1]⁺, 3), 779 (100), 777 (80), 630 (6), 524 (6). HRMS (FAB) *m/z* 777.1405 ([M-

5

CF₃SO₃]⁺, C₂₇H₄₈O₃N₄F₃SPd₂, calcd. 777.1411). Anal. Calcd for C₂₈H₄₈O₆N₄F₆S₂Pd₂: C, 36.25; H, 5.22; N, 6.04. Found; C, 36.36; H, 5.28; N, 5.95.

[2,3,5,6-Tetrakis{(dimethylamino)methy}phenylene-1,4-bis(palladiumtrifluoromethane-

sulfonate)], [(PdOTf)₂-1,4-{C₆(CH₂NMe₂)₄-2,3,5,6}] (S6b). Compound S6b was synthesized according to the procedure for S6a. The resulting white solid was dried under vacuum. Yield 97% (0.554 g). ¹H NMR (CD₃OD) δ 3.86 (s, 8H, PhCH₂), 2.74 (s, 24H, NCH₃). ¹³C NMR (CD₃OD) δ 148.8, 138.9, 72.6, 52.6. MS (FAB) *m*/*z* 816 ([M+1]⁺, 3), 814 ([M-1]⁺, 1), 667 (100), 665 (90), 613 (24), 518 (21). HRMS (FAB) *m*/*z* 665.0221 ([M-CF₃SO₃]⁺, C₁₉H₃₂F₃N₄O₃Pd₂S, calcd. 665.0216). Anal. Calcd for C₂₀H₃₂F₆N₄O₆Pd₂S₂: C, 29.46; H, 3.96; N, 6.87. Found; C, 29.36; H, 4.04; N, 6.73.

[2,3,5,6-Tetrakis{(diethylamino)methy}phenylene-1,4-bis(platinumtrifluoro-methanesulfonate)], [(PtOTf)₂-1,4-{C₆(CH₂NEt₂)₄-2,3,5,6}] (S7a). Compound S7a was synthesized according to the procedure for S6a. The resulting yellow solid was dried under vacuum. Yield 95 % (0.735 g). ¹H NMR (CD₃OD) δ 3.95 (s, 8H, ³J_{Pt-H} = 46.4 Hz, PhCH₂), 3.06 (dq, J = 12.5 Hz, 7.1 Hz, 8H, NCH₂), 2.90 (dq, J= 12.5 Hz, 7.1 Hz, 8H, NCH₂), 1.42 (t, J = 7.1 Hz, 24H, CH₃). ¹³C NMR (CD₃OD) δ 149.7, 137.3, 68.4, 60.4, 13.8. MS (FAB) *m*/*z* 1104 (M⁺, 3), 955 (100), 847 (17), 806 (8), 775 (8). HRMS (FAB) *m*/*z* 954.2678 ([M-CF₃SO₃]⁺, C₂₇H₄₈F₃N₄O₃Pt₂S, calcd. 954.2674). Anal. Calcd for C₂₈H₄₈F₆N₄O₆Pt₂S: C, 30.43; H, 4.38; N, 5.07. Found; C, 30.36; H, 4.39; N, 4.99.

[2,3,5,6-Tetrakis{(dimethylamino)methy}phenylene-1,4-bis(platinumtrifluoromethanesulfonate)], [(PtOTf)₂-1,4-{C₆(CH₂NMe₂)₄-2,3,5,6}] (S7b). Compound S7b was synthesized according to the procedure for S7a. The resulting yellow solid was dried under vacuum. Yield 97% (0.554 g). ¹H NMR (CD₃OD) δ 3.86 (s, 8H, ³J_{Pt-H} = 44.4 Hz, PhCH₂), 2.74 (s, 24H, ³J_{Pt-H} = 32.0 Hz, NCH₃). ¹³C NMR (CD₃OD) δ 138.9, 137.3, 75.1, 54.2. MS (FAB) *m*/*z* 992 (M⁺, 1), 843 (100), 734 (19), 694 (26), 613 (55). HRMS (FAB) *m*/*z* 841.1390 ([M-CF₃SO₃]⁺, C₁₉H₃₂O₃N₄F₃Pt₂S, calcd. 841.1401). Anal. Calcd for C₂₀H₃₂O₆N₄F₆Pt₂S₂: C, 24.20; H, 3.25; N, 5.64. Found; C, 24.40; H, 3.50; N, 5.39.

References

- [1] Jeon, S. L.; Loveless, D. M.; Yount, W. C.; Craig, S. L. Inorg. Chem. accepted for publication.
- [2] Porwisiak, J.; Dmowski, W. Synth. Commun. 1989, 19, 3221-3229.
- [3] Abicht, H. -P.; Issleib, K. J. Organomet. Chem. 1980, 185, 265-275.
- [4] Steele, B. R.; Vrieze, K. Transition Met, Chem. 1977, 2, 140-144.
- [5] (a) Hopff, H.; Doswald, P.; Manukian, B. K. *Helv. Chim. Acta* 1961, 44, 1231-1237. (b) Wu, A.
 -T.; Liu, W. -D.; Chung, W. -S. *J. Chinese Chem. Soc. (Taipei, Taiwan)* 2002, 49, 77-82.
- [6] Steenwinkel, P.; Jastrzebski, J. T. B. H.; Deelman, B. -J.; Grove, D. M.; Kooijman, H.; Veldman, N.; Smeets, W. J. J.; Spek, K. L.; van Koten, G. Organometallics 1997, 16, 5486-5498.