Core-shell structure of chemically synthesized FePt nanoparticles: a comparative study

Michaël Delalande,^a Pierre R. Marcoux,^b Peter Reiss *^b and Yves Samson*^a

Fig. S1 $Fe^{0} Pt^{II}$ dioctylether method: (a) X-Ray diffraction patterns recorded on as-made and annealed nanoparticles; (b) TEM micrograph of as-made nanoparticles; (c) diameter distribution of as-made nanoparticles.

Fig. S2 *Fe⁰ Pt^{II} dibenzylether* method: (a) X-Ray diffraction patterns recorded on as-made and annealed nanoparticles; (b) TEM micrograph of as-made nanoparticles; (c) diameter distribution of as-made nanoparticles.

Fig. S3 Fe^{ll} Pt^{ll} diphenylether method: (a) X-Ray diffraction patterns recorded on as-made and annealed nanoparticles; the black spot indicates that these both peaks from FePt alloy superimpose on (400) diffraction pattern of silicon substrate; the star indicates (311) diffraction pattern due to iron oxide (either Fe₃O₄ or γ-Fe₂O₃); (b) TEM micrograph of as-made nanoparticles; (c) diameter distribution of as-made nanoparticles.

Fig. S4 Fe^{-II} Pt^{II} dioctylether method: X-Ray diffraction patterns recorded on as-made and annealed particles.

Fig. S5 $Fe^{II} Pt^{II} TEG$ method: (a) X-Ray diffraction patterns recorded on as-made and annealed nanoparticles; black spots indicate peaks coming from (311) diffraction pattern of silicon substrate; (b) TEM micrograph of as-made nanoparticles.