Supporting information

Bactericidal nanofabrics based on photoproduction of singlet oxygen

Jiří Mosinger^{*†‡}, Oldřich Jirsák[§], Pavel Kubát[⊥], Kamil Lang[‡] and Bedřich Mosinger, Jr.^{§§} [†]*Faculty of Sciences, Charles University in Prague, 2030 Hlavova, 128 43 Prague 2, Czech Republic,* [‡]*Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 250 68 Řež, Czech Republic,*

[§]Technical University of Liberec, Halkova 6, 461 17 Liberec, Czech Republic,

 $^{\perp}J$. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic

^{§§} Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029

Experimental Details

Materials

Polyurethane (PUR): Larithane LS 1086^{TM} , $M_W \approx 50\ 000$, aliphatic elastomer based on 2000 M_W linear polycarbonated diol, isophorone diisocyanate and extended isophorone diamine), Novotex, Italy;

Tetraethylammonium bromide (TEAB), 9,10-antracenediyl-bis(methylene)dimalonic acid, all Fluka;

5,10,15,20-tetraphenylporhyrin (TPP), Porphyrin Systems, Germany;

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal, Invitrogen, CA, USA);

Bacteria DH5α (Invitrogen, CA, USA);

Plasmid pGEM11Z (Promega, WI, USA);

Uric acid, tryptophan, N,N-dimethylformamide (DMF), sodium dodecyl sulfate (SDS), D₂O, KI, NaN₃ and other inorganic salts, all Aldrich, were used as received.

Preparation of nanofabrics

The nanofiber layers were produced using an electrospinning device (Figure S1) consisting of a roller immersed in a tank containing a polymer solution in DMF. A polypropylene spun-bond textile moves along a grounded counter-electrode and serves as the supporting textile for the continuous nanofiber layer. The area weight of the nanofiber layer (*ca.* 2 g/m²) is easily controlled by linear velocity of the supporting material (18 g/m²).

The nanofiber layers were prepared using following solutions:

i) 15 % PUR, 1.2 % TEAB in DMF (porphyrin-free nanofibers)

ii) 15 % PUR, 1.2 % TEAB, 0.12 % TPP in DMF

iii) 15 % PUR, 1.2 % TEAB, 0.12 % TPP, 0.6 % SDS in DMF

Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2006

Methods

The UV/VIS absorption spectra were measured on a Unicam 340 and Perkin Elmer Lambda 35 spectrometers. The fluorescence emission spectra were recorded using a Perkin Elmer LS 50B luminescence spectrophotometer. All fluorescence spectra were corrected for the characteristics of the detection monochromator and photomultiplier using a recently described procedure (Gardecki, J. A.; Maroncelli, M. *Appl. Spectroscopy* **1998**, *52*, 1179).

Time-resolved photophysical measurements

Laser flash photolysis experiments were performed with a Lambda Physik FL 3002 dye laser (425 nm, output energy 0.1-3 mJ/pulse, pulse width ~ 28 ns). The time profiles of the porphyrin triplet states were probed at 460 nm using a 250 W Xe lamp equipped with a pulse unit and a R928 photomultiplier. The recorded time profiles were analyzed by nonlinear leastsquares fitting procedure giving the lifetime of the triplet states τ_T under conditions used. The formation of singlet oxygen was followed using time-resolved near-infrared emission at 1270 nm. The emission was monitored with a germanium diode (Judson J16-8SP-R05M-HS, USA) after being selected by a 1270 nm band-pass filter (Laser Components, Olching, Germany). The lifetime of ${}^{1}O_{2}$ was calculated from the averaged kinetic traces using the simplified fitting function with τ_{Δ} and A (~ Φ_{Δ}) as free parameters

$$S(t) = A \frac{\tau_{\Delta}}{\tau_T - \tau_{\Delta}} (\exp(-t/\tau_T) - \exp(-t/\tau_{\Delta})),$$

where τ_T and τ_{Δ} are lifetimes of the triplet states and of $O_2({}^1\Delta_g)$, respectively. Delayed fluorescence was monitored at 650 nm that is the maximum of the monomer fluorescence emission band. All traces were accumulated 20 - 500 times to improve the signal-to-noise statistics. Where appropriate, the experiments were performed in argon or oxygen atmosphere and in argon-, air- or oxygen-saturated solutions.

Continuous irradiation experiments

A piece of the porphyrin-doped nanofabric was peeled off from the polypropylene supporting textile and placed into a thermostatted 10 mm quartz cell (22 °C) containing an aqueous solution of a substrate (0.1M I⁻, 10^{-4} M, 9,10-antracenediyl-bis(methylene)dimalonic acid, 2.25×10^{-4} M uric acid). The cell was irradiated by a 300W stabilized halogen lamp under continuous stirring. The UV/VIS absorbance changes due to the formation of an oxidized substrate were recorded in regular time intervals and compared with those of a blank solution of the same composition kept in the dark.

A piece of the porphyrin-doped nanofabric was peeled off from the polypropylene supporting textile and placed on X-gal bacterial agar plates inoculated with bacteria *Escherichia coli* DH5 α containing plasmid pGEM11Z producing β -galactosidase. The agar plates were either illuminated with cold white light from a 150W halogen bulb for 60 minutes, or kept in the dark. The plates were then incubated overnight in the dark at 37°C to allow individual bacteria to grow and form visible blue-green colonies. Blue-green color of the colonies was due to an indolyl dye produced from X-gal substrate (5-bromo-4-chloro-3-indolyl- β -D galactopyranoside) by the bacterial β -galactosidase.

Figure S1. Electrospinning device. 1 - tank with polymer solution, 2 - polymer solution, 3 - rotating spinning roller (charged), <math>11 - polymer solution inlet, 12 - polymer solution outflow, 40 - grounded electrode, 5 - cover, 6 - vacuum duct, 90 - air duct, 9 - air, 20 - flying nanofibers, 72 - polypropylene spun-bond supporting material, <math>81 - unwinding, 82 - take-up mechanism.

Figure S2. Time-resolved absorption of the triplet states of **2** monitored at 460 nm in the given atmosphere (λ_{exc} = 425 nm, average of 20 traces)

Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2006

Figure S3. Linear dependence of the rate constants k_{02} of the triplet states in **2** on partial pressure of oxygen p_{02} . The straight line gives the bimolecular rate constant of 2.5 s⁻¹ Pa⁻¹.

Figure S4. Time-resolved luminescence of ${}^{1}O_{2}$ generated by irradiation of **2** in air atmosphere (λ_{exc} = 425 nm, average of 20 traces), and after immersing **2** into H₂O, D₂O and 10⁻² M NaN₃ (a). Typical fitting curves of singlet oxygen luminescence (b) and triplet states (c) in air-saturated H₂O.

Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2006

Figure S5. Time-resolved delayed fluorescence of **2** at 650 nm as a function of partial pressure of oxygen p_{O2} . In argon atmosphere only prompt fluorescence ($\tau_{\rm f} \sim 10$ ns) was detected (black line). The amplitude of delayed fluorescence increases with oxygen content whereas the lifetime decreases. The nanofabric **2** was irradiated by a Lambda Physik FL3002 dye laser (425 nm, fwhm 28 ns, energy 1.1 mJ/pulse).

Figure S6. Absorption changes of 3 ml of air-saturated aqueous solution of 0.1M I⁻ containing a piece of **1** (1 cm²) during continuous irradiation for 60 min by a stabilized 300W halogen lamp at 22°C. The increasing bands at 287 and 351 nm correspond to photoproduced I₃⁻. The amount of I₃⁻ is directly proportional to the concentration of $O_2(^{1}\Delta_g)$. Inset: Concentration of I₃⁻, expressed by absorbance at 351 nm, produced by irradiation of air-saturated (a) and oxygen-free (b) iodide solutions.

Supplementary material (ESI) for Journal of Materials Chemistry This journal is $\[mathbb{C}\]$ The Royal Society of Chemistry 2006

Figure S7. Photodegradation of uric acid during 60 min irradiation of 3 ml of 2.25×10^{-4} mol l⁻¹ uric acid containing a piece of 1 (1 cm²) by a stabilized 300W halogen lamp at 22°C. The arrows indicate the course of photooxidation. Air-saturated 0.02 mol l⁻¹ phosphate buffer, pH = 7.0. Inset: Comparison of actual concentrations of uric acid in air- (a) and argon-saturated (b) solutions during irradiation.

