Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2007

Nitrocellulose-Stabilized Silver Nanoparticles as Low Conversion Temperature Precursors Useful for Inkjet-Printed Electronics

Bao Toan Nguyen, ^a Julien E. Gautrot, ^a My T. Nguyen, ^b and X. X. Zhu*^a

^{*a*} Department of Chemistry, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montreal, QC, H3C 3J7, Canada.

^bAmerican Dye Source, Inc., 555 Morgan Blvd., Baie d'Urfe, QC, H9X 3T6, Canada * Corresponding author. E-mail: julian.zhu@umontreal.ca

Fig. S1 UV-Vis absorption spectrum of nitrocellulose/AgNP solution in methanol (obtained from 3.6 wt% silver nitrate, 1.1 wt% 3AP and 2 wt% nitrocellulose).

Fig. S2 Viscosity of nitrocellulose solutions in methanol (squares), nitrocellulose solutions in methanol containing 1.1 wt% 3AP (triangles) and nitrocellulose/AgNP solutions in methanol containing 1.1 wt% 3AP (circles).

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2007

Fig. S3 (a) Side view direct SEM image and (b) back scattered electron image of annealed nitrocellulose thin films. The film thickness of 101 ± 16 nm was estimated from (b).

Fig. S4 Morphology of nitrocellulose/AgNP films annealed on a hot plate at 140 (a), 190 (b) and 260°C (c) for 30 min. The size of the images is $2x2 \mu m$.

Fig. S5 Morphology of nitrocellulose/AgNP films annealed in the oven at 190°C for 5 (a), 10 (b) and 24 h (c). The size of the images is $2x2 \ \mu m$.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2007

Fig. S6 XPS spectra taken with nitrocellulose / AgNP films annealed (left) in the oven for 6 h at 190 °C and (right) on a hot plate for 30 min at 190 °C. From the spectra, the composition in mol% of the elements was calculated with the Avantage data system software from VG Scientific, as listed in the table below:

Peak	Position (eV)	Peak area	Mol%	Sensitivity factor
Ag MNN	1135.0	3490464.75	0.0	1.000
Ag 3s	719.0	381064.48	0.0	1.000
Ag 3p1	604.0	708390.90	0.0	1.000
Ag 3p3	573.0	1319624.95	0.0	1.368
O 1s	532.0	20718.04	2.7	0.660
Ag 3d	368.0	4022864.51	63.0	5.200
C 1s	285.0	108402.94	34.3	0.250
Ag 4s	97.0	74623.13	0.0	1.000
Ag 4p	58.0	442221.43	0.0	1.000
Ag 4d	5.0	414702.58	0.0	1.000

The molar % of Ag, for example, was calculated from the most sensitive peak (Ag 3d) by the use of the following equation:

 $Ag_molar\% = \frac{Peak_area_Ag / Sensitive_factor_Ag}{\sum Peak_area_element / Sensitive_factor_element}$