Supporting Information

Journal of Materials Chemistry

Transition Temperature Engineering of Octaalkoxycarbonyl Phthalocyanines

Sergey Sergeyev, Olivier Debever, Eric Pouzet and Yves Henri Geerts* Laboratory of Polymer Chemistry, Université Libre de Bruxelles (ULB), CP 206/1, Boulevard du Triomphe, 1050 Bruxelles, Belgium; e-mail ygeerts@ulb.ac.be

Fig. SI 1 MALDI mass spectra of 4

Fig. SI 2 MALDI mass spectra of 5

Fig. SI 3 MALDI mass spectra of 6

Fig. SI 4 MALDI mass spectra of 7

Fig. SI 5 MALDI mass spectra of 8

For Tables **SI 1–SI 5**, calculations have been performed as follows. Exact molecular masses and abundances of molecular ions with the lowest isotopic mass have been calculated with ChemDrawPro version 4.5 software package (CambridgeSoft Corporation). Distribution of products $Pc(COOR^1)_n(COOR^2)_{8-n}$ were calculated as coefficients of a binomial $(ax + by)^8$, where a = 1, b = 1 for **4** and **8**, a = 1, b = 2 for **5**, a = 3, b = 1 for **6**, and a = 2, b = 1 for **7**. Calculated relative intensity of signals corresponding to molecular ions with the lowest isotopic mass has been obtained by multiplying of distribution of products $Pc(COOR^1)_n(COOR^2)_{8-n}$ by the relative abundance of molecular ions with the lowest isotopic mass for each product followed by normalization (intensity of the most intense signal is taken as 100%).

Table SI 1. Calculated relative intensities of signals corresponding to molecular ions of individual components $Pc(COOR^1)_n(COOR^2)_{8-n}$ in **4** ($R^1 = C_{8,4}$, $R^2 = C_{6,2}$).

п	Calculated exact molecular mass	Distribution of products, calculated as coefficients of binomial $(x + y)^8$	Calculated abundance of molecular ions with the lowest isotopic mass (in % of the most intense isotopic peak)	Calculated relative intensity signals corresponding to molecular ions with the lowest isotopic mass, %
0	1763.1	1.4	86.5	1.6
1	1819.1	11.4	83.2	12.7
2	1875.2	40.0	80.3	42.9
3	1931.3	80.0	77.5	82.8
4	1987.3	100.0	74.9	100
5	2043.4	80.0	72.5	77.4
6	2099.5	40.0	70.2	37.5
7	2155.5	11.4	68.1	10.4
8	2211.6	1.4	66.1	1.3

Table SI 2. Calculated relative intensities of signals corresponding to molecular ions of individual components $Pc(COOR^1)_n(COOR^2)_{8-n}$ in **5** ($R^1 = C_{8,4}$, $R^2 = C_{6,2}$).

n	Calculated exact molecular mass	Distribution of products, calculated as coefficients of binomial $(x + 2y)^8$	Calculated abundance of molecular ions with the lowest isotopic mass (in % of the most intense isotopic peak)	Calculated relative intensity signals corresponding to molecular ions with the lowest isotopic mass, %
0	1763.1	0.06	86.5	0.07
1	1819.1	0.9	83.2	1.0
2	1875.2	6.25	80.3	6.9
3	1931.3	25	77.5	26.7
4	1987.3	62.5	74.9	64.6
5	2043.4	100	72.5	100
6	2099.5	100	70.2	96.8
7	2155.5	57.1	68.1	53.7
8	2211.6	14.3	66.1	13.0

Table SI 3. Calculated relative intensities of signals corresponding to molecular ions of individual components $Pc(COOR^1)_n(COOR^2)_{8-n}$ in **6** ($R^1 = C_{10,6}$, $R^2 = C_{8,4}$).

п	Calculated exact molecular mass	Distribution of products, calculated as coefficients of binomial $(3x + y)^8$	Calculated abundance of molecular ions with the lowest isotopic mass (in % of the most intense isotopic peak)	Calculated relative intensity signals corresponding to molecular ions with the lowest isotopic mass, %
0	2211.6	32.1	66.1	34.0
1	2267.6	85.7	64.2	88.2
2	2323.7	100	62.4	100
3	2379.8	66.7	60.7	64.9
4	2435.8	27.8	59.2	26.4
5	2491.9	7.4	57.6	6.8
6	2548.0	1.2	56.2	1.1
7	2604.0	0.1	54.8	0.1
8	2660.1	0.005	53.5	0.004

Table SI 4. Calculated relative intensities of signals corresponding to molecular ions of individual components $Pc(COOR^1)_n(COOR^2)_{8-n}$ in 7 ($R^1 = C_{10,6}$, $R^2 = C_{8,4}$).

п	Calculated	Distribution of	Calculated abundance of	Calculated relative
	exact molecular	products, calculated	molecular ions with the	intensity signals
	mass	binomial $(2x + y)^8$	% of the most intense	molecular ions with
			isotopic peak)	the lowest isotopic
				mass, %
0	2211.6	14.3	66.1	15.1
1	2267.6	57.1	64.2	58.8
2	2323.7	100	62.4	100
3	2379.8	100	60.7	97.3
4	2435.8	62.5	59.2	59.3
5	2491.9	25	57.6	23.1
6	2548.0	6.25	56.2	5.6
7	2604.0	0.9	54.8	0.8
8	2660.1	0.06	53.5	0.05

Table SI 5. Calculated relative intensities of signals corresponding to molecular ions of individual components $Pc(COOR^1)_n(COOR^2)_{8-n}$ in **8** ($R^1 = C_{10,6}$, $R^2 = C_{8,4}$).

n	Calculated exact molecular mass	Distribution of products, calculated as coefficients of binomial $(x + y)^8$	Calculated abundance of molecular ions with the lowest isotopic mass (in % of the most intense isotopic peak)	Calculated relative intensity signals corresponding to molecular ions with the lowest isotopic mass, %
0	2211.6	1.4	66.1	1.6
1	2267.6	11.4	64.2	12.4
2	2323.7	40.0	62.4	42.2
3	2379.8	80.0	60.7	82.0
4	2435.8	100.0	59.2	100
5	2491.9	80.0	57.6	77.8
6	2548.0	40.0	56.2	38.0
7	2604.0	11.4	54.8	10.6
8	2660.1	1.4	53.5	1.3

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2007

Fig. SI 6 ¹H NMR spectrum of 3b (300 MHz, in CDCl₃, 25 °C)

Fig. SI 7¹³C NMR spectrum of 3b (75 MHz, in CDCl₃, 25 °C)

Fig. SI 8 ¹H NMR spectrum of 4 (300 MHz, in CDCl₃, 25 °C)

Fig. SI 9 ¹³C NMR spectrum of **4** (75 MHz, in CDCl₃, 25 °C)

Fig. SI 10 ¹H NMR spectrum of 8 (300 MHz, in CDCl₃, 25 °C)

Fig. SI 11 ¹³C NMR spectrum of 8 (75 MHz, in CDCl₃, 25 °C)

Fig. SI 12 POM texture of 8 at 58 °C after cooling from the isotropic phase to the Col_r phase.

Fig. SI 13 Schematic representation of two Col_r phases possessing *p2gg* and *c2mm* plane symmetry.