A New Role for Surfactants in the Formation of Cobalt Nanoparticles

Rohini M. de Silva et al.

Supporting Materials

- (1) **S1**. Table of EXAFS Fitting results for the Co NPs obta9ined using OA/ODA. k range: 2.5-14 Å⁻¹, R range: 1.7-5.7Å, k-weights=1,2,3.
- (2) S2. Experimental (a) and theoretical (b) FT EXAFS spectra of Co NPs
- (3) **S3.** Table of EXAFS Fitting results for the Co NPs obtained using OA. k range: 2.5-14 Å⁻¹, R range: 1.7-5.7Å, k-weights=1,2,3.
- (4) **S4.** Table of EXAFS Fitting results for the Co NPs obtained using OA/TOPO. k range: 2.5-14 Å⁻¹, R range: 1.7-5.7Å, k-weights=1,2,3.
- (5) **S5.** Table of EXAFS Fitting results for the Co NPs obtained using OA/TOP. k range: 3-12 Å⁻¹, R range: 1.5-5.4 Å, k-weights=1,2,3.
- (6) **S6.** FT-IR comparison of 7 min (red), 8 min (blue) spectra of the reaction mixture with the spectrum of the tricobalt intermediates (green) leading to cobalt nanoparticles.
- (7) **S7.** B3LYP optimized structure of $[Co_3(\mu-CO)_3(CO)_3CCH_3]$. Blue, grey, red and white balls represent Co, C, O and hydrogen respectively. The calculated carbonyl vibration energies at 1812, 1856, 1975 and 2011 cm⁻¹ result from B3LYP method.
- (8) **S8.** B3LYP optimized structure of the suggested $\{Co(CO)[P(C_8H_{15})]_3\}$ intermediate Co complex showing the tetrahedral geometry around the Co atom (H atoms are removed for clarity)
- (9) **S9.** Table of the magnetic data from SQUID magnetometer
- (10) **S10.** Hysteresis loops Magnetization vs Applied Magnetic field (300K and 10K)
- (11) **S11**. A summary of the influence of surfactants on the reaction mechanism and in turn on the properties of Co nanoparticles obtained.

Co-NPs fcc fit		hcp fit		
(OA-ODA)				
dr_1	-0.021+/-0.004	-0.018+/-0.005		
Rmult	Rmult 0.004 +/-0.002 0.003+/-0.003			
N1	5.5+/-0.3	5.6+/-0.4		
Nmult	0.46+/-0.02	0.47+/-0.03		
E0_1	-0.6+/-0.6	-1.3+/-0.7		
E0	E0 2.7+/-0.8 2.6+/-1.5			
ss1	0.0075+/-0.0004	0.0077+/-0.0006		
χ ² v	242	354		
R-factor	r 0.013 0.0			

S1: Table of EXAFS Fitting results for the Co NPs obtained using OA/ODA. k range: 2.5-14 Å⁻¹, R range: 1.7-5.7Å, k-weights=1,2,3.

S2. Experimental (a) and theoretical (b) FT EXAFS spectra

Co NPs (OA)	fcc fit	hcp fit		
dr_1	-0.023+/-0.005	-0.019+/-0.004		
Rmult	0.007+/-0.003	0.005+/-0.004		
N1	6.6+/-0.4	6.7+/-0.4		
Nmult	0.55+/-0.03	0.56+/-0.03		
E0_1	-1.5+/-0.7	-1.9+/-0.6		
E0	3.8+/-0.8	3.5+/-1.4		
ss1	0.0081+/-0.0005	0.0081+/-0.0006		
$\chi^2 v$	172	143		
R-factor	0.015	0.012		

S3 - Table of EXAFS Fitting results for the Co NPs obtained using OA. k range: 2.5-14 Å⁻¹, R range: 1.7-5.7Å, k-weights=1,2,3.

Co NPs	fcc fit	hcp fit		
(OA/TOPO)				
dr_1	-0.019+/-0.004	-0.018 +/-0.005		
Rmult	0.005+/-0.002	0.006+/-0.004		
N1 5.8+/-0.3 5.8+/-0.4		5.8+/-0.4		
Nmult	0.48+/-0.02	0.48+/-0.03		
E0_1	-0.7+/-0.6	-1.6+/-0.7		
E0	3.8+/-0.8	4.1+/-1.5		
ss1	0.0095+/-0.0005	0.0095+/-0.0007		
$\chi^2 v$	117	209		
R-factor	0.012	0.017		

S4 -Table of EXAFS Fitting results for the Co NPs obtained using OA/TOPO. k range: 2.5-14 Å⁻¹, R range: 1.7-5.7Å, k-weights=1,2,3.

Co NPs	bcc fit	epsilon fit		
(OA/TOP)				
dr_1	-0.006+/-0.017	-0.1 +/-0.01		
Rmult	alt -0.025+/-0.026 -0.019+/-0.01			
N1	8.6+/-2.0 8.8+/-1.6			
Nmult	0.7+/-0.17	0.7+/-0.1		
E0_1	-5.6+/-2.8	-5.5+/-1.9		
E0	-6.9+/-6.8	-5.5+/-1.9		
ss1	0.012+/-0.002	0.011+/-0.002		
χ^2_{v}	1769	1648		
R-factor	0.055	0.059		

S5 : Table of EXAFS Fitting results for the Co NPs obtained using OA/TOP. k range: 3-12 Å⁻¹, R range: 1.5-5.4 Å, k-weights=1,2,3.

S6: FT-IR comparison of 7 min (red), 8 min (blue) spectra of the reaction mixture with the spectrum of the tricobalt intermediates (green) leading to cobalt nanoparticles.

S7: B3LYP optimized structure of $[Co_3(\mu-CO)_3(CO)_3CCH_3]$. Blue, grey, red and white balls represent Co, C, O and hydrogen respectively. The calculated carbonyl vibration energies at 1812, 1856, 1975 and 2011 cm⁻¹ result from B3LYP method.

S8: B3LYP optimized structure of the suggested $\{Co(CO)[P(C_8H_{15})]_3\}$ intermediate Co complex showing the tetrahedral geometry around the Co atom (H atoms are removed for clarity)

Co NPs	T _b (K)	M _s (emu/)	M _r (emu/)	M_r / M_s	H _c (G)	$\mu_H = \mu_B / \text{atom}$	T (K)
OA-TOPO		38	0.38	0.01	1300	0.39	300
OA-ODA		77	10	10	7.5	0.79	300
OA		153	0	0	0	1.61	300
OA-TOP		317	0	0	10	3.34	300
OA-TOPO	230	50	0.8	0.02	4600	0.51	10
OA-ODA	300	80	38	0.48	4600	0.82	10

OA	295	167	45	0.20	683	1.76	10
OA-TOP	37.8	351	45	0.16	179	3.7	10

S9. Table of the magnetic data from SQUID magnetometer

S10. Hysteresis loops (Magnetization vs Applied Magnetic field)

S11: A summary of the influence of surfactants on the reaction mechanism and in turn on the properties of Co nanoparticles obtained.