Tunable Red-Green-Blue Fluorescent Organogels on the Basis of Intermolecular Energy-Transfer

Tianmin Shu,^a Junchen Wu,^a Min Lu,^b Liqin Chen,^a Tao Yi,^a* Fuyou Li,^a* Chunhui Huang^a

Electronic Supplementary Information

Efficiency of energy transfer (*E*) can be obtained from following equations:

$$E = 1 - \frac{\tau_{DA}}{\tau_D} \tag{1}$$

$$E = \frac{R_0^6}{R_0^6 + R^6}$$
(2)

$$k = \frac{1}{\tau_D} \left(\frac{R_0}{R}\right)^6 \tag{3}$$

$$R_0^6 = \frac{9000(\ln 10)\kappa^2 \phi_D}{128\pi^5 N_A n^4} I$$
 (4)

$$I = \int_0^\infty F_D(\lambda) \varepsilon_A(\lambda) \lambda^4 d\lambda$$
 (5)

In these equations, τ_{DA} is the fluorescence lifetime of the donor in the presence of the acceptor and τ_D is the fluorescence lifetime of the donor in the absence of the acceptor, R_0 is the Förster distance between the donor and the acceptor, R is the real distance between the donor and the acceptor, κ^2 is an orientation factor between the donor and acceptor, Φ_D is the quantum yield of the donor in the absence of the acceptor, I the spectral overlap of the emission spectrum of the donor with the absorption spectrum of the acceptor (normalized on a wavenumber scale), nthe index of refraction of the medium, N_A Avogadro's number and, $F_D(\lambda)$ is the corrected fluorescence intensity of the donor in the wavelength range from λ to $\lambda + \Delta \lambda$, with the total intensity normalized to unity, $\varepsilon_A(\lambda)$ is the extinction coefficient of the acceptor at λ .

Fig. S1 Lifetime decay profiles ($\lambda ex = 371 \text{ nm}$, monitored at 635 and 440 nm) of **3** on addition of different amounts of **1** (0-50 mol %) in *n*-octanol ($c = 5.0 \times 10^{-6} \text{ M}$).

Fig. S2 Lifetime decay profiles ($\lambda ex = 371$ nm, monitored at 635 and 440 nm) of **3/1** (4:1, mol/mol) in *n*-octanol solutions with the whole concentration changed from 5.0×10^{-6} to 5.0×10^{-3} M.

V _D	V _A	$\tau_{\rm DA} (\rm ns) \blacktriangle$	$\tau_{\rm R}(\rm ns)$ \blacksquare	$I(\text{cm}^3/\text{M})$	$R_0(nm)$	R (nm)	$k(10^7 \text{s}^{-1})$	E (%)	
100	0	3.80(100%)							
100	2	3.68(100%)	3.50 (100%)	5.90×10 ⁻¹⁴		7.81	0.88	3.2	
100	5	3.62(100%)	3.36(100%)				7.31	1.30	4.7
100	10	3.60(100%)	3.31(100%)		⁻¹⁴ 4.43	7.16	1.48	5.3	
100	25	3.56(100%)	0.41(25.79%)			6.94	1.78	6.3	
			3.13(74.21%)						
100	50	3.55(100%)	0.52(45.78%)				6.89	1.86	6.6
			3.97(54.22%)						

Tab S1 Relative coefficient of energy transfer between donor and acceptor in 3 / 1 *n*-octanol ($c = 5.0 \times 10^{-6}$ M)

 $\Delta \tau_{DA}$ is the fluorescence lifetime of the donor in the present of acceptor

▼ τ_R is the fluorescence lifetime of acceptor (rise time) and, the fluorescence lifetime of acceptor is 3.65 ns (*c*=5×10⁻⁶M, *n*-octanol) in the absence of donor.

Tab S2 Relative	coefficient of	energy trans	fer between	donor ar	nd acceptor	in 3 / 1	<i>n</i> -octanol
(4: 1, v/v)							

$c (mol \cdot L^{-1})$	logc	E (%)
5.0×10^{-6}	-5.30	6.3
5.0×10^{-5}	-4.30	18.1
5.0×10^{-4}	-3.30	45.2
5.0×10^{-3}	-2.30	69.0

Tab S3 Xerogel state E-T c	oefficient of 3 + 1 serials
----------------------------	---

WD	WA	τ_{DA}	$\tau_R \blacksquare$	E(%)
100	0	24.18 (75.27%), 10.60 (24.73%)		
100	2	6.83 (11.85%), 22.00 (88.15%)	0.27 (19.20%), 13.90 (80.80%)	3.0
100	5	5.93 (11.99%), 20.18 (88.01%)	18.24 (100%)	11.3
100	10	21.06 (80.30%), 5.79 (19.70%)	15.63 (100%)	13.3
100	25	18.84 (76.16%), 5.13 (23.84%)	14.36 (100%)	25.2
100	50	16.81 (80.50%), 5.04 (19.50%)	12.59 (100%)	30.3

 $\Delta \tau_{DA}$ is the fluorescence lifetime of **3** (donor) in the present of **1** (acceptor).

 $\mathbf{\nabla} \tau_{R}$ is the fluorescence lifetime of acceptor (rise time); the fluorescence lifetime of acceptor is 65.83 ns (xerogel from *n*-octanol) in the absence of donor.