Electronic Supplementary Information (ESI)

for the article untitled "Spray-dried mesoporous silica microspheres with adjustable textures and pore surfaces homogenously covered by accessible thiol functions"

Table SA. Morphological properties from SEM.

Table SB. Textural properties from XRD.

Table SC. S/Si and N/Si ratios.

Table SD. ¹H and ¹³C chemical shifts and assignments.

Fig. SA. Solid state NMR ¹H-¹H BaBa experiments.

Fig. SB. XRD diagrams obtained when varying *h* from 5 to 10 (samples D to I).

Fig. SC. ¹H, ¹³C, and ²⁹Si solid state NMR spectra of the as-synthesised thiol-functionalised mesoporous microspheres.

Fig. SD. SEM and X-ray cartography analysis of Ag^+ containing sample **E-SE** + Ag^+ .

Fig. SE.¹⁴N solid state NMR spectra.

Sample	Shape	$D_{AV}{}^{\mathrm{a}}/\mu\mathrm{m}$	$\sigma^{ ext{a}}/\mu$ m	$D_{GM}^{b}/\mu \mathrm{m}$	$S_G^{\rm b}/\mu{ m m}$	Elongation
А	aggl	2.51	1.31	1.76 ±0.17	0.58 ± 0.09	1.037
В	slightly agglom.	2.19	1.42	1.45 ± 0.04	$0.19\pm\!\!0.03$	1.032
С	slightly agglom.	2.49	1.35	1.51 ±0.20	0.77 ± 0.13	1.054
D	slightly agglom.	2.17	0.95	1.61 ±0.10	0.51 ± 0.06	1.039
Е	spheres	2.23	1.53	1.21 ±0.08	0.60 ± 0.05	1.035
F	spheres	2.03	1.3	1.14 ±0.06	$0.59\pm\!\!0.04$	1.044
G	spheres ^c	1.87	1.14	0.89 ± 0.14	0.80 ± 0.13	1.03
Н	spheres ^c	1.92	2.07	1.00 ± 0.08	0.64 ± 0.07	1.053
Ι	spheres ^c	2.18	1.53	1.00 ± 0.09	0.70 ± 0.07	1.037
J	gel	-	-	-	-	-
К	slightly agglom.	2.1	1.51	1.06 ± 0.11	$0.59\pm\!\!0.09$	1.058

Table SA: morphological properties from SEM.

a: average diameters D_{AV} and standard deviations σ obtained from the experimental size distribution.

b: values obtained by modelling the experimental size distribution (Fig. 2). The uncertainties given come from the fitting procedure.

c: particles solidified in the course of fragmentation like in Fig. 2c are also observed for these samples.

Sample	d_{Broad} $^{\mathrm{a}}$ / $\mathrm{\AA}$	<i>d</i> ₁₀₀ ^b / Å	a_{HEX} °/Å	% Broad ^d	% SP ^e	FWHM (100) peak
Α	35.4	33.5	39.1	49.0	8.7	0.225
В	37.0	35.0	40.8	54.3	6.1	0.206
С	36.0	34.2	40.2	58.4	7.5	0.248
D	36.4	34.4	40.2	54.0	7.6	0.229
E	37.5	35.1	40.8	49.6	6.3	0.226
F	38.2	35.7	41.5	47.8	7.5	0.239
G	38.0	35.5	41.5	48.7	6.4	0.241
Н	37.8	35.6	41.6	50.4	6.1	0.254
Ι	38.0	35.5	41.6	50.7	6.4	0.264
J	35.8	34.3	40.0	67.8	3.8	0.172
K	35.2	34.7	40.4	87.8	3.4	0.258

Table SB: textural properties from XRD.

a: characteristic distances relative to the broad "scattering" peak at low 2θ used for modelling. b: characteristic distances relative to the thin "diffraction" peak at low 2θ used for modelling. It corresponds to the inter-reticular distance of (100) planes.

c: average values of a_{HEX} obtained from (100), (110) and (200) diffraction peaks.

d: percentage of the area of the broad "scattering" peak at low 2θ used for modelling.

e: percentage area of the (110), (200) and (210) diffraction peaks of the *p6mm* phase.

Table SC:S/Si and N/Si ratios.

Sample	f (S/Si init.)	S/Si elem. ^a	S/Si (¹ H) ^b	S/Si (²⁹ Si) ^b	S/Si(¹³ C) ^b	N/Si init.	N/Si elem. ^a
Α	0.102		0.064			0.160	
В	0.103		0.078			0.160	
С	0.104		0.074			0.160	
D	0.103	0.099	0.084	0.088		0.160	0.175
Ε	0.102	0.113	0.085	0.099	0.089	0.159	0.152
F	0.100	0.083	0.064			0.160	0.167
G	0.104	0.103	0.080			0.159	0.169
Н	0.104	0.102	0.081			0.160	0.162
Ι	0.104	0.100	0.093			0.159	0.159
J	0.200	0.190	0.142	0.206		0.160	0.169
K	0.195	0.170		0.167		0.160	0.184

a: from elemental analysis.

b: from ¹H, ²⁹Si or ¹³C solid state NMR.

Table SD: ¹H and ¹³C chemical shifts and assignments.

Chemical group	$\delta(^{1}H) / ppm$	$\delta(^{13}C) / ppm$		
CTA^+				
C1	3.7 - 3.8	67 - 68		
C'1	3.4 - 3.5	54.1		
C2	1.4 - 1.5	23 - 24		
C3	1.3 - 1.4	26 - 27		
C4 to C13	1.4 - 1.5	30.4 - 30.6		
C14	1.4 - 1.5	32.7		
C15	1.4 - 1.5	23.3 - 23.4		
C16	0.9 - 1.0	14.6 - 14.8		
Si-(CH ₂) ₃ -SH				
Si-CH ₂ -	0.8 - 1.0	12.5 - 12.9		
C-CH ₂ -C	1.7 - 1.9	27 - 28		
CH ₂ -S	2.6 - 2.8	27 - 28		
C-SH	1.3 - 1.5	_		
Si-OEt				
Si-O-CH ₂	3.8 - 4.0	60.4		
C-CH ₃	1.3 - 1.5	18.6		
Si-O ⁱ Pr				
Si-O-CH	4.3 - 4.5	66.2		
C-CH ₃	1.4 - 1.5	25 - 26		
Hydroxy				
Si-OH H ₂ O	~6			

 CTA^+ is numbered from the head group (C'1) to the tail (C1 to C16).

Fig. SA: Solid state NMR ¹H-¹H BaBa experiments.

The original DQ-SQ spectra have been sheared in order to present the 2D correlations as symmetrical SQ-SQ spectra (the double-quantum vertical dimension is replaced by a "pseudo-single quantum" dimension). In addition, the spectra are zoomed to the 0-5 ppm interval that contains most of the peaks (except the wide peaks of the OH groups).

a) Sample E.

b) Sample E-TT-SE. The numbered correlations are:

```
1) SiOCH<sub>2</sub>CH<sub>3</sub>\leftrightarrowSiOCH<sub>2</sub>CH<sub>3</sub>;
```

```
2) SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SH\leftrightarrowSiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SH;
```

```
3) SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SH\leftrightarrowSiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SH;
```

```
4) SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SH\leftrightarrowSiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SH ;
```


Fig. SB: XRD diagrams obtained when varying *h* from 5 to 10 (samples **D** to **I**).

Fig. SC. Solid state NMR single pulse spectra of the as-synthesised thiol-functionalised mesoporous microspheres (here sample **E**) with their modelling and assignment. (a) ²⁹Si (3058 scans). (b) ¹³C (9546 scans). (c) ¹H (16 scans).

Fig. SD. SEM and X-ray cartography analysis of Ag^+ containing sample $E-SE + Ag^+$. The

scale bar represents 2 μ m.

Fig. SE. ¹⁴N solid state NMR spectra of: (a) crude crystalline CTAB, (b) treated sample **E**-**NH3-** γ , (c) as-synthesised sample **E**. Acquisition conditions were the same for the three samples except the number of scans. We used 4096, 136980 and 163840 scans in 12a, 12b and 12c respectively. The vertical scales have been normalised in order to account for these differences. For spectra 12b and 12c, the scales are magnified by a factor 10.

