Supporting Information

Systematic Extension of the Length of the Organic Conjugated π -System of

Mesoporous Silica-based Organic-Inorganic Hybrid Materials

Maximilian Cornelius, Frank Hoffmann, Boris Ufer, Peter Behrens and Michael Fröba*

Characterisation of the new organosilane precursors:

Characterisationoftheorganosilaneprecursor4,4'-bis-((E)-2-(triethoxysilyl)vinyl)stilbene (BTEVS)

¹H NMR:

¹H NMR (CDCl₃, 200 MHz): δ 1.28 (*t*, 18 H, J = 7.0 Hz), 3.89 (*q*, 12 H, J = 7.0 Hz), 6.19 (*d*, 2 H, J = 19.3 Hz), 7.1 (*s*, 2 H), 7.22 (*d*, 2 H, J = 19.3 Hz), 7.48 (*s*, 8 H);

Figure S1. ¹H NMR spectrum of 4,4'-bis-((E)-2-(triethoxysilyl)vinyl)stilbene measured in CDCl₃.

 $^{13}C \{^{1}H\}$ NMR:

¹³C {¹H} NMR (CDCl₃, 100 MHz): δ18.4 (CH₃-CH₂), 58.7 (CH₃-CH₂), 117.7 (CH-Si), 126.8 (C_{arom}H), 127.2 (C_{arom}H), 128.6 (CH-C_{arom}), 137.0 (C_{arom}), 137.7 (C_{arom}), 148.6 (CH-C_{arom});

Figure S2. ¹³C {¹H} NMR spectrum of 4,4'-bis-((*E*)-2-(triethoxysilyl)vinyl)stilbene measured in CDCl₃.

FT-IR:

FT-IR (film, cm⁻¹): 2975, 2926, 2887, 1602, 1513, 1390, 1166, 1102, 1079, 962, 827, 802

Figure S3. FT-IR spectrum of 4,4'-bis-((*E*)-2-(triethoxysilyl)vinyl)stilbene measured as film.

Characterisation of the organosilane precursor 4,4'-bis-((*E*)-2-(triethoxysilyl)vinyl)diazene (BTEVAB)

¹H-NMR:

¹H-NMR (CDCl₃, 200 MHz) δ (ppm) = 1,16 (*t*, 18 H, *J* = 7,0 Hz, CH2-CH₃); 3,79 (*q*, 12 H, *J* = 7,0 Hz, O-CH₂); 6,18 (*d*, 2 H, *J* = 19,3 Hz, CH=CH-Si); 7,16 (*d*, 2 H, *J* = 19,3 Hz, CH=CH-Si); 7,48 (*m*, 4 H, CH=CH-C_{arom}-C_{arom}-H); 7,79 (*m*, 4 H, N=N-C_{arom}-C_{arom}-H)

Figure S4. ¹H NMR spectrum of 4,4'-bis-((*E*)-2-(triethoxysilyl)vinyl)diazene measured in CDCl₃.

 $^{13}C \{^{1}H\}$ -NMR:

¹³C {¹H}-NMR (CDCl₃, 50 MHz) δ (ppm) = 17,9 (CH₂-CH₃); 58,2 (O-CH₂); 119,8 (Si-CH); 123,2 (CH=CH-Si); 127,2 (N=N-C_{arom.}-C_{arom.}-H); 139,7 (CH=CH-C_{arom.}-C_{arom.}-H); 147,8 (C_{arom.}-CH=CH); 152,2 (C_{arom.}-N=N)

Figure S5. ¹³C {¹H} NMR spectrum of 4,4'-bis-((*E*)-2-(triethoxysilyl)vinyl)diazene measured in CDCl₃.

FT-IR:

FT-IR (Film, cm⁻¹): 2973, 2925, 2886, 1600, 1390, 1166, 1101, 1078, 959, 805

Figure S6. FT-IR spectrum of 4,4'-bis-((*E*)-2-(triethoxysilyl)vinyl)diazene measured as film.

Characterisation of the mesoporous hybrid materials

Ethene-bridged hybrid material (1):

The powder X-ray diffraction pattern of the mesoporous ethene-bridged hybrid material reveals only one reflection at 2.05 ° 2θ (d = 4.31 nm), indicating a periodic arrangement of the mesopores. The lack of further reflections in the wide-angle region indicates no crystal-like arrangement of the organic spacers within the pore walls.

Figure S7. Powder X-ray diffraction pattern of the mesoporous ethene-bridged hybrid material.

Benzene-bridged hybrid material (2):

The powder X-ray diffraction pattern of the mesoporous benzene-bridged hybrid material reveals at least one sharp reflection at 2.02 ° 2θ (d = 4.37 nm), indicating a periodic arrangement of the mesopores. In addition three peaks at $2\theta = 11.59$ ° (d = 0.76 nm), 23.26 ° (0.38 nm), 35.39 ° (0.25 nm), which can be attributed to a crystal-like arrangement of the organic spacers within the pore walls.

Figure S8. Powder X-ray diffraction pattern of the mesoporous benzene-bridged hybrid material.

The nitrogen physisorption measurement shows a type IV isotherm with a capillary condensation step at $p/p^0 = 0.3$. The mean pore diameter and the pore volume, as determined from the desorption branch by the BJH method, are 2.7 nm and 0.56 x 10⁻⁶ m³/g, respectively. The specific surface area determined by the BET method is 760 m²/g.

Figure S9. N₂-physisorption measurement of the mesoporous benzene-bridged PMO material measured at 77 K.

1,4-divinylbenzene-bridged hybrid material (3):

The powder X-ray diffraction pattern of the mesoporous 1,4-divinylbenzene-bridged hybrid material reveals one sharp reflection at 1.87 ° 2θ (d = 4.72 nm), indicating a periodic arrangement of the mesopores. In addition five peaks at $2\theta = 7.42$ ° (d = 1.19 nm), 14.78 ° (0.60 nm), 22.17 ° (0.40 nm), 29.82 ° (0.30 nm), 37.42 ° (0.24 nm) which can be attributed to a crystal-like arrangement of the organic spacers within the pore walls.

Figure S10. Powder X-ray diffraction pattern of the mesoporous 1,4-divinylbenzene-bridged hybrid material.

The nitrogen physisorption measurement shows a type IV isotherm with a capillary condensation step at $p/p^0 = 0.35$. The mean pore diameter and the pore volume, as determined from the desorption branch by the BJH method, are 2.8 nm and 0.62 x 10⁻⁶ m³/g, respectively. The specific surface area determined by the BET method is 794 m²/g.

Figure S11. N₂-physisorption measurement of the mesoporous 1,4-divinylbenzene-bridged PMO material measured at 77 K.

²⁹Si MAS NMR

Figure S12. ²⁹Si MAS NMR spectrum of the mesoporous 4,4′-divinylstilbene-bridged hybrid material.

Transmisson electron microscopy:

Figure S13. TEM images of the mesoporous 4,4'-divinylstilbene-bridged hybrid material.

Figure S14. TEM image of the mesoporous 4,4'-divinylazobenzene-bridged hybrid material