SUPPORTING INFORMATION

Rapid synthesis of highly luminescent

InP and InP/ZnS nanocrystals

Shu Xu, Jan Ziegler and Thomas Nann*

School of Chemical Science and Pharmacy, University of East Anglia, NR4 7TJ, Norwich, UK.

E-mail: T.Nann@uea.ac.uk

1. EDXS characterization for InP and InP/ZnS nanocrystals.

Figure S.1: The EDXS results for the zinc carboxylate capped InP NCs and InP/ZnS NCs. Elemental analysis showed a molar ratio In : P : Zn of ~ 1 :0.93 : 0.23 for a zinc carboxylate capped InP NCs and In : P : Zn : S of ~ 1: 0.99 : 4.5 : 3.0 for a InP/ZnS shelled NCs. The results indicated zinc rich particle surfaces.

2. The influence of HDA concentration to the growth of InP nanocrystals

Figure S.2: The PL spectra of the InP NCs prepared with different concentrations of HDA. The reaction solution contained 0.1 mmol InCl₃, 0.1mmol ZnUA and 0.1mmol SA. The amount of HDA for each sample is (from left to right): 0.5 mmol, 0.35 mmol, 0.2 mmol.

The concentration of HDA had a much weaker effect on the crystal growth and size distribution of the NCs. With a change of the initial amount from 0.2 mmol to 0.5 mmol, the final PL emission wavelength of the NCs shifted by only 40 nm.

<i>3</i> .	The quantum	yields of	differently	sized InP/ZnS	NCs in figure 3	(paper).
------------	-------------	-----------	-------------	---------------	-----------------	----------

Emission wavelength	480 nm	515 nm	545 nm	575 nm	610 nm	660 nm	700 nm	735 nm
Quantum yields	20 %	32 %	43 %	52 %	58 %	48 %	45 %	40 %

Figure S.3: The peaks in the XRD pattern of InP/ZnS core/shell samples shift to resemble the XRD pattern of ZnS and no mixed peaks of ZnS or InP NCs were found, indicating pure InP/ZnS particles. Narrow peak of InP/ZnS NCs comparing to InP NCs also showed the bigger size.

5. FT-IR characterization for InP NCs.

Figure S.4: The FT-IR spectra of the ligands as well as chloroformic InP NCs solutions were measured. InP sample 1 was prepared with an initial HDA: SA: In:P:ZnUA ratio of 2:2:1:1:1, InP sample 2 was prepared with an initial HDA:SA:In:P:ZnUA ratio of 4:0:1:1:1. The C-N peak at 3015 cm⁻¹ in HDA still appeared in InP NCs samples and had about 10 cm⁻¹ shift. The peak in ZnUA at 1607 cm⁻¹ appeared in InP NCs and had about 10 cm⁻¹ shift. FT-IR proved that the HDA and zinc carboxylate were both situated on the surface of the InP NCs.