Electronic supplementary information (ESI)

Cholesterol-based non-symmetric liquid crystal dimers: an overview

C. V. Yelamaggad*, G. Shanker, Uma S. Hiremath and S. Krishna Prasad Centre for Liquid Crystal Research, Jalahalli, Bangalore 560 013, INDIA

1. Schiff's bases (azomethines)

Table S1: Phase behavior of cholesterol-based dimers having Schiff's base anisometric segment. Cr = crystal; Sm \tilde{C} = two-dimensional modulated smectic C phase (ribbon phase); Sm_{q3} = smectic phase having a periodicity lower than half the molecular length (q3 is the wave vector); Sm_{ic} = incommensurate smectic A phase; Sm_{q1 LT/HT} = smectic phase having a layer spacing close to molecular length (q1 is the wave vector; LT = low temperature, HT = high temperature); SmC* = chiral smectic C phase; SmA = smectic A phase; Sm1, Sm2 = smectic (Sm_{q3}) phase; Sm1', Sm2' = tilted commensurate smectic (Sm_{q1}) phase; SmX₁, SmX₂ = unknown smectic phases; TGB = twist grain boundary phase; N* = chiral nematic phase; BPI = blue phase I; BPII = blue phase II; I = isotropic phase; () = monotropic behavior. Generally, dimers are tabulated in the order of their appearance in the literature.

Note: For references mentioned in the last column, see the reference section of the main text.

	R		X	
Dimer	R	Х	Phase sequence and transition temperatures in °C	Ref.
1-1	<i>n</i> -C ₄ H ₉	O(CH ₂) ₅ COO	Cr 85 Sm _{ic} 144.5 SmC* 149 SmA _{ic} 151.5 SmC* 165 TGB 168 N* 192 I	15
			Cr 85 Sm _{ic} 144.5 SmC* 149 Sm _{ic} 151.5 SmC* 165 TGB 168 N* 191 BP 192 I	16
			Cr 85 Sm̃C 97 Sm _{q3} 141 Sm _{ic} 146 Sm _{q1LT} 152 Sm _{q1HT} 164 TGB 168 N* 192 I	17
1-2	<i>n</i> -C ₄ H ₉	O(CH ₂) ₄ COO	Cr 85 SmC* 134 SmC* 141 TGB 142 N* 153.8 BPI 154.8 BPII 155.6 I	16
1-3	<i>n</i> -C ₄ H ₉	O(CH ₂) ₇ COO	Cr 148 SmA 151.5 TGB 152.5 N* 172.8 BP 173.5 I	16
1-4	<i>n</i> -C ₄ H ₉	O(CH ₂) ₁₀ COO	Cr 104 SmA 124.5 TGB 125 N* 140 BPI 140.6 BPII 141.2 I	16
1-5	CH=CHCO ₂ C ₂ H ₅	O(CH ₂) ₅ COO	Cr 139 Sm _{ic} 140 Sm _{q3} 206 N* 238 I	17

1-6	$n-C_2H_5$	O(CH ₂) ₅ COO	Cr 139Sm2 (96) Sm1 157 N* 198 I	18
1-7	<i>n</i> -C ₃ H ₇	O(CH ₂) ₅ COO	Cr 112 Sm2 (98) Sm1 149 TGB 151 N* 196 I	18
1-8	$n-C_5H_{11}$	O(CH ₂) ₅ COO	Cr 70 Sm2' 102 Sm1' 176 N* 190 I	18
1-9	<i>n</i> -C ₆ H ₁₃	O(CH ₂) ₅ COO	Cr 84 Sm2' 112 Sm1' 181 N* 188 I	18
1-10	<i>n</i> -C ₁₀ H ₂₁	O(CH ₂) ₅ COO	Cr 84 Sm2' 115 Sm1' 184 I	18
1-11	<i>n</i> -C ₁₂ H ₂₅	O(CH ₂) ₅ COO	Cr 63.6 SmC* 104.8 SmA 174.7 I	19
1-12		O(CH ₂) ₅ COO	Cr 127.7 SmA 169.1 TGB 169.5 N* 193.2 I	19
1-13		O(CH ₂) ₅ COO	Cr 120.7 SmX ₁ 150.5 SmX ₂ 165.6 TGB 165.7 N* 185.4 I	19
1-14	CI CO ₂ Et	O(CH ₂) ₅ COO	Cr 105.4 SmC* (84.2) SmA 123.5 N* 148.5 I	19
1-15	$n-OC_3H_7$	O(CH ₂) ₅ COO	Cr 117 Sm _{q3} 171 N* 212 I	20
1-16	COCH3	O(CH ₂) ₅ COO	Cr 116 Sm _{q1} 156 TGB 160 N* 216 I	20
1-17	CN	O(CH ₂) ₅ COO	Cr 160 Sm_{q1}^{\dagger} 176 TGB 178 N* 216 I	20
1-18	NO ₂	O(CH ₂) ₅ COO	Cr 178 Sm_{q1}^{\dagger} (165) TGB (167) N* 208 I	20
1-19	$n-C_8H_{17}$	O(CH ₂) ₅ COO	Cr 130.5 SmC* (124.1) SmA 195.5 N* 197.6 I	21
1-20	CH ₂ (CF ₂) ₆ CF ₃	O(CH ₂) ₅ COO	Cr 111.9 SmC* 143.7 SmA 235.4 I	21
1-21	<i>n</i> -OC ₂ H ₅	OOC(CH ₂) ₂ COO	Cr 166.7 N* 256.2 I	22
1-22	n-OC ₅ H ₁₁	OOC(CH ₂) ₂ COO	Cr 118.5 N* 243.1 I	22
1-23	<i>n</i> -OC ₇ H ₁₅	OOC(CH ₂) ₂ COO	Cr 132.5 N* 234.1 I	22

[†] The Sm_{q1} phase formed by dimers **1-17** and **1-18** is in fact similar to the SmA_d phase seen for the polar system satisfying the condition L < d < 2L

2. Tolanes (diphenylacetylenes)

Table S2^a: Phase behavior of cholesterol-based dimers consisting of tolane anisometric moiety. TGBA = twist grain boundary phase featuring SmA blocks; TGBC* = twist grain boundary phase having SmC* slabs; BP = blue phase; M_x = Unknown mesophase.

	R		R_2		2		
	R			\square			
					0		
Dimer	R	R_1	R_2	n	Phase sequence and transition temperatures in °C	Ref.	
2-1	n-OC ₄ H ₉	Н	Н	5	Cr 111.5 N* 203.3 I	23	
					Cr 113 TGB _{q3} 120 N* 205 I	27	
2-2	0 C ₆ H ₁₃	Н	Н	4	Cr 85.1 SmA 108.4 I	25	
2-3	0 ⁻¹⁵	Н	Н	5	Cr 89 SmA 146.2 I	25 30	
2-4	<i>n</i> -OC ₆ H ₁₃	Н	Н	5	Cr 130.8 TGBC* (105) TGBA (120) SmA 152.5 TGBA 161.2 N* 197.3 I	26	
					Cr 129 TGBC* (110) SmA _{q1} 155 TGBA _{q1} 164 N* 199 I	27	
2-5	<i>n</i> -OC ₃ H ₇	Н	Н	5	Cr 126 Sm _{q3} 129 TGB _{q3} 131 N* 206 I	27	
2-6	n-OC ₅ H ₁₁	Н	Η	5	Cr 125 TGBA _{q1} 151 N* 199 I	27	
					Cr 124.8 N* 199.3 I [†]	31	
2-7	<i>n</i> -OC ₇ H ₁₅	Н	Н	5	Cr 114 SmC* _{q1} (113) SmA _{q1} 168 TGBA _{q1} 170 N* 192 I	27	
2-8	<i>n</i> -OC ₁₀ H ₂₁	Н	Η	5	Cr 95 SmC* _{q1} 132 SmA _{q1} 183 N* 186 I	27	
2-9	<i>n</i> -C ₄ H ₉	Н	Н	3	Cr 155 SmA 186.8 TGB ^b -N* 204.7 I	28 32	
2-10	<i>n</i> -C ₅ H ₁₁	Н	Η	3	Cr 153.6 SmC* (81.7) SmA 178.1 TGB ^b -N* 195.6 I	28	
2-11	<i>n</i> -C ₆ H ₁₃	Н	Н	3	Cr 119.3 SmC* (81.9) SmA 196.4 TGB ^b -N* 202.4 I	28 33	
2-12	<i>n</i> -C ₇ H ₁₅	Н	Н	3	Cr 82.8 SmA 193.3 TGB ^b -N* 196.3 I	28	
2-13	<i>n</i> -C ₄ H ₉	Н	Н	4	Cr 118.2 SmA 126.8 TGB ^b -N*-BP ^b 148.3 I	28	

Supplementary material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2008

2-14	<i>n</i> -C ₅ H ₁₁	Н	Н	4	Cr 115.8 SmA 134.6 TGB ^b -N*-BP ^b 150.4 I	28
2-15	<i>n</i> -C ₆ H ₁₃	Н	Н	4	Cr 105.9 SmA 138.1 TGB ^b -N* 146.1 I	28
2-16	<i>n</i> -C ₄ H ₉	Н	Н	5	Cr 99 Sm _{q1} 146 TGB _{q1} 150.5 N* 185.4 I	24
					Cr 99.5 SmC* (83.4) SmA 152.5 TGB ^b -N* 186.1 I	28
2-17	$n-C_7H_{15}$	Н	Н	4	Cr 103 SmA 142.2 TGB ^b -N*-BP ^b 146.5 I	28
2-18	$n-C_5H_{11}$	Н	Н	5	Cr 114.9 SmC* (84.2) SmA 161.4 TGB ^b -N* 185.4 I	28
2-19	<i>n</i> -C ₆ H ₁₃	Н	Н	5	Cr 88.8 SmC* 100.4 SmA 166.7 TGB ^b -N* 180.3 I	28
2-20	<i>n</i> -C ₇ H ₁₅	Н	Н	5	Cr 108 SmC* (99.7) SmA 170.8 TGB ^b -N* 178.7 I	28
2-21	<i>n</i> -C ₄ H ₉	Н	Н	7	Cr 146.9 SmA (132.6) TGB ^b -N* 168.8 I	28
2-22	$n-C_5H_{11}$	Н	Н	7	Cr 145.7 N* 168.4 I	28
2-23	<i>n</i> -C ₆ H ₁₃	Н	Н	7	Cr 90.9 SmC* 97.9 SmA 167.5 TGB ^b -N* 180.3 I	28
2-24	<i>n</i> -C ₇ H ₁₅	Н	Н	7	Cr 128.3 SmC* (98.3) SmA 139.8 TGB 142.4 N* 164.1 I	28
2-25	C.H.a	NO_2	Н	5	Cr 86.4 SmA 111.2 N* 113.1 I	29
2-26	0 C ₆ H ₁₃	F	Н	5	Cr 84.4 SmA 145.6 I	29
2-27	0 CoHe	Н	Н	5	Cr 120.8 M_x (63.1) SmA 159.2 TGB ^b -N* 182.9 I	29
2-28	0, CoH-	Н	NO ₂	5	Cr 138.6 SmA (134.1) N* 143.8 I	29
2-29		Η	Η	5	Cr 92.8 SmC* 99.9 SmA 168.3 I	29

^a The transition between different crystalline forms have been ignored; only the crystalline form (temperature) melting into the mesophase is mentioned. ^b A very short lived phase. [†] The reinvestigation on the reported phase sequence (ref. 31) is in progress

3. Azobenzenes (diphenyldiazenes)

Table S3: Phase behavior of cholesterol-based dimers comprising azobenzene anisometric segment. $Sm\tilde{A} = Two$ -dimensional modulated smectic A antiphase; Sm = smectic phase; SmX = solid-like phase; Sm1 = Unknown fluid smectic phase

Dimer	R	R ₁	R ₂	Х	Phase sequence and transition temperatures in °C	Ref.
3-1	<i>n</i> -C ₄ H ₉	Н	Η	O(CH ₂) ₅ COO	Cr 113 Smà 137 Sm _{q1} 160 TGB _{q1} 163 N* 194 I	17 24
3-2	<i>n</i> -OC ₈ H ₁₇	Н	Н	O(CH ₂) ₅ COO	Cr 112 SmC* 135.7 SmA 187.5 N* 199 I	21
3-3	OCH ₂ (CF ₂) ₆ CF ₃	Н	Н	O(CH ₂) ₅ COO	Cr 110.1 SmA 246.9 I	21
3-4	<i>n</i> -C ₄ H ₉	Н	Η	$OOC(H_2C) + (C \equiv C) + (CH_2)COO$	Cr 79 SmA 109 I	34
3-5	$n-C_7H_{15}$	Η	Н	$OOC(H_2C) - (C \equiv C) - (CH_2) COO = C = C = C = C = C = C = C = C = C$	Cr 89 SmA 112 I	34
3-6	<i>n</i> -C ₁₂ H ₂₅	Н	Н	$OOC(H_2C) - (C \equiv C) - (CH_2) COO$	Cr 93 SmA 108 I	34
3-7	<i>n</i> -C ₁₄ H ₂₉	Н	Н	$OOC(H_2C) - (C \equiv C) - (CH_2) COO$	Cr 96 SmA 103 I	34
3-8	<i>n</i> -C ₁₆ H ₃₃	Н	Н	$OOC(H_2C) - (C \equiv C) - (CH_2) COO$	I 100 SmA 74 Cr	34
3-9	Н	Н	Н	$OOC(H_2C) - (C \equiv C) - (CH_2) COO = C = C = C = C = C = C = C = C = C$	Cr 70 SmA 76 N* 82 I	34
3-10	Н	Н	Н	OOC(CH ₂) ₂₀ COO	Cr 97 N* 104 I	34
3-11	Н	Н	Н	OOC(CH ₂) ₆ COO	Cr 123.5 N* 153.2 I	35
3-12	Н	Н	Н	OOC(CH ₂) ₇ COO	Cr 110.6 Sm 114.9 I	35
3-13	Н	Н	Н	OOC(CH ₂) ₈ COO	Cr 102 N* 141.5 I	30 35
3-14	Н	Н	Н	OOC(CH ₂) ₉ COO	Cr 109.3 N* 116.8 I	35
3-15	Н	Н	Н	OOC(CH ₂) ₁₀ COO	Cr 97.1 N* 131.7 I	35
3-16	Н	Н	Η	OOC(CH ₂) ₁₁ COO	Cr 99.9 N* 114.3 I	35

3-17	Н	Н	Н	OOC(CH ₂) ₁₂ COO	Cr 112.7 N* 121.9 I	35
3-18	Н	Н	Н	OOC(CH ₂) ₁₃ COO	Cr 100.3 N* 112.3 I	35
3-19	Н	Н	Н	OOC(CH ₂) ₁₄ COO	Cr 96.6 N* 120.1 I	35
3-20	<i>n</i> -C ₇ H ₁₅	Н	Н	OOC(CH ₂) ₇ COO	Cr 122.7 SmA 125.4 N* 145.7 I	36
3-21	<i>n</i> -C ₇ H ₁₅	Н	Н	OOC(CH ₂) ₈ COO	Cr 86.6 SmC* 110.6 SmA 126.2 N* 159.3 I	37
3-22	<i>n</i> -OC ₈ H ₁₇	Н	Η	O(CH ₂) ₄ COO	Cr 119.2 SmA 161.2 N* 167.6 I	38
3-23	$n-OC_8H_{17}$	Н	Н	O(CH ₂) ₆ COO	Cr 132.7 SmA (41.7) N* 162.6 I	38
3-24	<i>n</i> -OC ₈ H ₁₇	Н	Н	O(CH ₂) ₇ COO	Cr 145.7 SmA 153.6 N* 180.9 I	38
3-25	$n-OC_8H_{17}$	Н	Н	O(CH ₂) ₁₀ COO	Cr 118.5 SmA (45.2) N* 153.7 I	38
3-26	<i>n</i> -OC ₈ H ₁₇	Н	Н	O(CH ₂) ₁₁ COO	Cr 128.5 SmA 147 N* 160 I	38
3-27	OCH ₂ (CF ₂) ₆ CF ₃	Н	Н	O(CH ₂) ₄ COO	Cr 123.6 SmA 231.3 I	38
3-28	OCH ₂ (CF ₂) ₆ CF ₃	Н	Н	O(CH ₂) ₆ COO	Cr 110.5 SmA 214 I	38
3-29	OCH ₂ (CF ₂) ₆ CF ₃	Н	Н	O(CH ₂) ₇ COO	Cr 110.3 SmA 221.8 I	38
3-30	OCH ₂ (CF ₂) ₆ CF ₃	Н	Н	O(CH ₂) ₁₀ COO	Cr 101.3 SmC* (95.4) SmA 190 I	38
3-31	OCH ₂ (CF ₂) ₆ CF ₃	Н	Н	O(CH ₂) ₁₁ COO	Cr 80.1 SmA 184.2 I	38
3-32	<i>n</i> -OC ₈ H ₁₇	F	F	O(CH ₂) ₄ COO	Cr 88.4 SmA (75.2) N* 149 I	39
3-33	<i>n</i> -OC ₈ H ₁₇	F	F	O(CH ₂) ₅ COO	Cr 89.5 SmX (60.2) Smà 127 SmC* 139 N* 184 I	39
3-34	<i>n</i> -OC ₈ H ₁₇	F	F	O(CH ₂) ₆ COO	Cr 105 SmX (72.8) N* 143 I	39
3-35	<i>n</i> -OC ₈ H ₁₇	F	F	O(CH ₂) ₇ COO	Cr 100 TGBC (96.6) SmC* 131 N* 170 I	39
3-36	n-OC ₈ H ₁₇	F	F	O(CH ₂) ₈ COO	Cr 107 SmX 115 N* 140 I	39
3-37	<i>n</i> -OC ₈ H ₁₇	F	F	O(CH ₂) ₉ COO	Cr 99.6 TGBC (87.9) Sm1 126 SmC* 142 N* 156 I	39
3-38	$n-OC_8H_{17}$	F	F	O(CH ₂) ₁₀ COO	Cr 96.1 SmX (38.5) N* 140 I	39
3-39	<i>n</i> -OC ₈ H ₁₇	F	F	O(CH ₂) ₁₁ COO	Cr 99.6 SmX (74.1) TGBC (86.3) SmC* 140 N* 150 I	39
3-40	<i>n</i> -OC ₈ H ₁₇	F	F	O(CH ₂) ₁₂ COO	Cr 80.3 SmX (48.1) N* 136 I	39
3-41	OCH ₂ (CF ₂) ₆ CF ₃	F	F	O(CH ₂) ₄ COO	Cr 73.6 SmA 211 I	39
3-42	OCH ₂ (CF ₂) ₆ CF ₃	F	F	O(CH ₂) ₅ COO	Cr 111 SmA 224 I	39
3-43	OCH ₂ (CF ₂) ₆ CF ₃	F	F	O(CH ₂) ₆ COO	Cr 70.6 SmA 189 I	39

3-44	OCH ₂ (CF ₂) ₆ CF ₃	F	F	O(CH ₂) ₇ COO	Cr 85.6 SmA 207 I	39
3-45	OCH ₂ (CF ₂) ₆ CF ₃	F	F	O(CH ₂) ₈ COO	Cr 69.8 SmA 178 I	39
3-46	OCH ₂ (CF ₂) ₆ CF ₃	F	F	O(CH ₂) ₉ COO	Cr 92.4 SmA 187 I	39
3-47	OCH ₂ (CF ₂) ₆ CF ₃	F	F	O(CH ₂) ₁₀ COO	Cr 75.3 SmA 169 I	39
3-48	OCH ₂ (CF ₂) ₆ CF ₃	F	F	O(CH ₂) ₁₁ COO	Cr 97.9 SmA 175 I	39
3-49	OCH ₂ (CF ₂) ₆ CF ₃	F	F	O(CH ₂) ₁₂ COO	Cr 75.5 SmA 160 I	39
3-50	NO ₂	Н	Н	OOC(CH ₂) ₂ COO	Cr 197.1 N* 240.9 I	40
3-51	NO_2	Н	Н	OOC(CH ₂) ₄ COO	Cr 130.5 N* 220 I	40
3-52	NO_2	Н	Н	OOC(CH ₂) ₆ COO	Cr 147.5 N* 194.8 I	40
3-53	NO ₂	Н	Н	OOC(CH ₂) ₈ COO	Cr 145.8 N* 183.7 I	40

4. Biphenyls (phenyl benzenes)

Table S4^a: Phase behavior of cholesterol-based dimers comprising biphenyl mesogenic moiety. The compounds are generally listed as per their order of appearance in the literature. SmE = Smectic E phase (this is not a true smectic phase and therefore it is regarded as crystal E phase in recent times); SmX = Unidentified smectic phase, N*_{re} = reentrant chiral nematic phase.

4-14	$\mathrm{COOC}_5\mathrm{H}_{11}$	Н	H O(CH ₂) ₁₀ COO	4	Cr 98.4 SmA 117.7 N* 126.2 I	43
4-15	COOC ₆ H ₁₃	Η	H O(CH ₂) ₅ COO	4	Cr 132 SmX (99) SmC* (111) SmA 160.5 N* 166.7 I	43
4-16	COOC ₆ H ₁₃	Н	H O(CH ₂) ₇ COO	4	Cr 137.8 SmE (68) SmA 143.2 N* 151.8 I	43
4-17	COOC ₆ H ₁₃	Н	H O(CH ₂) ₁₀ COO	4	Cr 82 SmA 111.7 N* 120.4 I	43
4-18	<i>n</i> -OC ₆ H ₁₃	Η	H O(CH ₂) ₃ COO	4	Cr 160 SmA 198 N* 207 I	44 45
4-19	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₄ COO	4	Cr 127 SmA 133 N* 148 I	44 45
					Cr 127.2 SmA 136.1 TGB 137.6 N* 150.7 I	46
4-20	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₅ COO	4	Cr 136 SmA 162 N* 181 I	44 45
					Cr 134.3 SmA 158.3 TGB 164.3 N* 182.1 I	46
4-21	<i>n</i> -OC ₆ H ₁₃	Η	H O(CH ₂) ₆ COO	4	Cr 103 N* 123 I	44 45
4-22	<i>n</i> -OC ₆ H ₁₃	Η	H O(CH ₂) ₇ COO	4	Cr 110 SmA 161 N* 168 I	44 45
4-23	<i>n</i> -OC ₆ H ₁₃	Η	H O(CH ₂) ₁₀ COO	4	Cr 95 SmA 130 N* 138 I	44 45
4-24	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₃ COO	3	Cr 58 N* (19) I	44
4-25	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₄ COO	3	Cr 82 SmA (59) I	44
4-26	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₅ COO	3	Cr 47 N* (33) I	44
4-27	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₆ COO	3	Cr 66 N* (36) I	44
4-28	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₇ COO	3	Cr 54 N* (33) I	44
4-29	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₁₀ COO	3	Cr 63 N* (42) I	44
4-30	<i>n</i> -OC ₄ H ₉	Н	H O(CH ₂) ₃ COO	4	Cr 171 SmA 169 N* 215 I	45
4-31	n-OC ₄ H ₉	Н	H O(CH ₂) ₄ COO	4	Cr 104 N* 152 I	45
					Cr 104 N* 153.1 I	46
4-32	<i>n</i> -OC ₄ H ₉	Н	H O(CH ₂) ₅ COO	4	Cr 118 SmA 171 N* 194 I	45
					Cr 116.6 SmA 166.5 N* 190.6 I	46
4-33	<i>n</i> -OC ₄ H ₉	Н	H O(CH ₂) ₆ COO	4	Cr 92 N* 142 I	45
4-34	n-OC ₄ H ₉	Н	H O(CH ₂) ₇ COO	4	Cr 112 SmA 166 N* 177 I	45
4-35	<i>n</i> -OC ₄ H ₉	Н	H O(CH ₂) ₁₀ COO	4	Cr 99 SmA 130 N* 144 I	45

4-36	n-OC ₅ H ₁₁	Н	H O(CH ₂) ₃ COO	4	Cr 174 SmA 188 N* 206 I	45
4-37	n-OC ₅ H ₁₁	Н	H O(CH ₂) ₄ COO	4	Cr 117 SmA 126 N* 148 I	45
					Cr 119.6 SmA 124.4 TGB 129.6 N* 150 I	46
4-38	n-OC ₅ H ₁₁	Н	H O(CH ₂) ₅ COO	4	Cr 143 SmA 169 N* 187 I	45
					Cr 145.2 SmA 170.8 TGB 171 N* 188.5 I	46
4-39	n-OC ₅ H ₁₁	Н	H O(CH ₂) ₆ COO	4	Cr 86 N* 141 I	45
4-40	n-OC ₅ H ₁₁	Н	H O(CH ₂) ₇ COO	4	Cr 95 SmA 165 N* 171 I	45
4-41	n-OC ₅ H ₁₁	Н	H O(CH ₂) ₁₀ COO	4	Cr 99 SmA 131 N* 142 I	45
4 42	ж ОС Н	п		4	Cr 112 2 Sm & 120 4 TCD 140 5 N* 146 1 I	16
4-42	<i>n</i> -0C ₇ n ₁₅	п	$H O(CH_2)_4 COO$	4	CI 112.5 SIIIA 159.4 TOB 140.5 N° 140.1 I	40
4-43	n-OC ₈ H ₁₇	Η	H $O(CH_2)_4COO$	4	Cr 107.8 SmA 144.7 TGB 145.2 N* 147.8 I	46
4-44	<i>n</i> -OC ₇ H ₁₅	Η	H O(CH ₂) ₅ COO	4	Cr 139.7 SmA 167.2 TGB 168 N* 179.4 I	46
4-45	<i>n</i> -OC ₈ H ₁₇	Η	H O(CH ₂) ₅ COO	4	Cr 111.5 SmA 172.2 TGB 172.4 N* 177.5 I	46
4-46	<i>n</i> -OC ₈ H ₁₇	F	F O(CH ₂) ₃ COO	4	Cr 127 SmC* (92.8) SmA 177.1 TGB ^b -N* 179.9 I	47
4-47	<i>n</i> -OC ₁₀ H ₂₁	F	F O(CH ₂) ₃ COO	4	Cr 81.4 SmC* 105.8 SmA 174.3 I	47
4-48	n-OC ₈ H ₁₇	F	F O(CH ₂) ₄ COO	4	Cr 80.1 SmA 119.7 TGB ^b -N* 125.5 I	47
4-49	<i>n</i> -OC ₁₀ H ₂₁	F	F O(CH ₂) ₄ COO	4	Cr 83.4 SmA 121 TGB ^b -N* 121.7 I	47
4-50	<i>n</i> -OC ₈ H ₁₇	F	F O(CH ₂) ₅ COO	4	Cr 67.4 SmC* 92.5 SmA 151.2 TGB ^b -N* 161.1 I	47
4-51	n-OC ₁₀ H ₂₁	F	F O(CH ₂) ₅ COO	4	Cr 62.1 SmC* 103.6 SmA 154.9 TGB ^b -N* 156.8 I	47
4-52	<i>n</i> -OC ₈ H ₁₇	F	F O(CH ₂) ₇ COO	4	Cr 77.1 TGBC* 85.8 SmA 117.5 TGB 124	47
4-53	<i>n</i> -OC ₁₀ H ₂₁	F	F O(CH ₂) ₇ COO	4	N* 145 I Cr 101.9 SmC* (94.2) SmA 132.4 TGB ^b - N* 142 I	47
4-54	CN	Н	H O(CH ₂) ₃ O	4	Cr 139 SmA (110) N* (118) I	48
4-55	CN	Н	H O(CH ₂) ₄ O	4	Cr 151 SmA 178 N* 210 I	48
4-56	CN	Н	H O(CH ₂) ₅ O	4	Cr 111 SmA 119 N* 146 I	48
4-57	CN	Н	H O(CH ₂) ₆ O	4	Cr 105 SmA 150 N* 188 I	48
4-58	CN	Н	H O(CH ₂) ₇ O	4	Cr 119 SmA (106) N* 147 I	48
4-59	CN	Н	H O(CH ₂) ₈ O	4	Cr 130 SmA (129) N* 172 I	48

4-60	CN	Н	H O(CH ₂) ₉ O	4	Cr 89 SmA 97 N* 144 I	48
4-61	CN	Н	H O(CH ₂) ₁₀ O	4	Cr 109 SmA 115 N* 160 I	48
4-62	CN	Н	H O(CH ₂) ₁₁ O	4	Cr 86 SmA 89 N* 140 I	48
4-63	CN	Н	H O(CH ₂) ₁₂ O	4	Cr 106 SmA (105) N* 151 I	48
4-64	<i>n</i> -OC ₄ H ₉	Н	H O(CH ₂) ₄ O	4	Cr 160 N* 189 I	48
4-65	<i>n</i> -OC ₄ H ₉	Н	H O(CH ₂) ₅ O	4	Cr 119 N* 133 I	48
4-66	<i>n</i> -OC ₄ H ₉	Н	H O(CH ₂) ₆ O	4	Cr 128 SmA 148 N* 175 I	48
4-67	<i>n</i> -OC ₄ H ₉	Н	H O(CH ₂) ₇ O	4	Cr 92 N* 135 I	48
4-68	<i>n</i> -OC ₄ H ₉	Н	H O(CH ₂) ₈ O	4	Cr 120 SmA 158 N* 167 I	48
4-69	<i>n</i> -OC ₄ H ₉	Н	H O(CH ₂) ₉ O	4	Cr 111 SmA 116 N* 139 I	48
4-70	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₅ O	4	Cr 113 SmA (106) N* 131 I	48
4-71	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₆ O	4	Cr 143 SmA 151 N* 174 I	48
4-72	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₇ O	4	Cr 109 N* 131 I	48
4-73	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₈ O	4	Cr 122 SmA 155 N* 161 I	48
4-74	<i>n</i> -OC ₆ H ₁₃	Н	H O(CH ₂) ₉ O	4	Cr 99 SmA 117 N* 135 I	48
4-75	<i>n</i> -OC ₁₂ H ₂₅	Н	H O(CH ₂) ₄ O	4	Cr 103 SmC* (98) SmA 182 I	49
4-76	<i>n</i> -OC ₁₂ H ₂₅	Н	H O(CH ₂) ₅ O	4	Cr 67 SmC* 78 SmA 120 I	49
4-77	<i>n</i> -OC ₁₂ H ₂₅	Н	H O(CH ₂) ₆ O	4	Cr 100 SmC* 113 SmA 162 I	49
4-78	<i>n</i> -OC ₁₂ H ₂₅	Н	H O(CH ₂) ₇ O	4	Cr 68 SmC* 79 SmA 114 N* 116 I	49
4-79	<i>n</i> -OC ₁₂ H ₂₅	Н	H O(CH ₂) ₈ O	4	Cr 89 SmC* 105 SmA 138 N* 143 I	49
4-80	<i>n</i> -OC ₁₂ H ₂₅	Н	H O(CH ₂) ₉ O	4	Cr 88 SmC* 90 SmA 110 N* 122 I ^c	49
4-81	<i>n</i> -OC ₁₂ H ₂₅	Н	H O(CH ₂) ₁₀ O	4	Cr 126 SmA 127 N* 137 I	49
4-82	<i>n</i> -OC ₁₂ H ₂₅	Н	H O(CH ₂) ₁₁ O	4	Cr 113 SmA (98) N* 120 I	49
4-83	<i>n</i> -OC ₁₂ H ₂₅	Н	H O(CH ₂) ₁₂ O	4	Cr 128 N* (125) I	49
4-84	<i>n</i> -OC ₁₂ H ₂₅	Н	H O(CH ₂) ₁₀ COO	4	Cr 116 N* _{re} (103) TGB (110) N* 127 I	49

^a The transition between different crystalline forms have not been considered; only the crystalline form (temperature) melting into the mesophase is mentioned. ^b A very short lived phase. ^c For this compound, the authors describe a N*-TGB-SmA-TGB-N* sequence during the cooling cycle, although transitions temperatures are not mentioned.

5. Chalcones (1,3-diphenylpropenones).

Table S5 ^a: Phase sequence and transition temperatures of cholesterol-based dimers consisting of chalcone core.

Dimers	R	n	Phase sequence and transition temperatures in °C	Ref.
5-1	n-OC ₁₀ H ₂₁	4	Cr 118.9 TGBC* (81.6) TGBA 124.4 I	50 51
5-2	n-OC ₁₁ H ₂₃	4	Cr 114.2 TGBC* (83.6) TGBA 125.4 I	50 51
5-3	n-OC ₁₂ H ₂₅	4	Cr 116.3 TGBC* (82.5) TGBA 125.9 I	50 51
5-4	n-OC ₂ H ₅	3	Cr 171.9 N* (167.6) BP (168.8) I	51
5-5	n-OC ₄ H ₉	3	Cr 162.6 N* (154.1) BP (156.6) I	51
5-6	n-OC ₅ H ₁₁	3	Cr 158.2 N* (152.3) BP (153.7) I	51
5-7	<i>n</i> -OC ₆ H ₁₃	3	Cr 141.2 SmA (125)-TGB ^b -N* (138.7) BP (140) I	51
5-8	<i>n</i> -OC ₇ H ₁₅	3	Cr 153.8 SmA (143.7) TGB (144.7) N* (150.7) BP (151.9) I	51
5-9	$n-OC_8H_{17}$	3	Cr 148.8 SmA 152.8 N* (146.7) BP (148) I	51
5-10	n-OC ₉ H ₁₉	3	Cr 145.8 SmA 150.5-TGB ^b -N*-(BP) ^b -151.2 I	51
5-11	n-OC ₁₀ H ₂₁	3	Cr 140.8 SmA- N* ^b -(BP) ^b -150.8 I	51
5-12	n-OC ₁₁ H ₂₃	3	Cr 138.1 SmA 150.5 I	51
5-13	n-OC ₁₂ H ₂₅	3	Cr 136.8 SmA 151.8 I	51
5-14	n-OC ₂ H ₅	4	Cr 125.3 N* 128.1 BP 132.4 I	51
5-15	n-OC ₄ H ₉	4	Cr 117.5 N* 121.0 BP (122.3) I	51
1				

5-16	n-OC ₅ H ₁₁	4	Cr 126.1 N* (116.5) BP (124.1) I	51
5-17	<i>n</i> -OC ₆ H ₁₃	4	Cr 132.2 N* (114.8) BP (116) I	51
5-18	<i>n</i> -OC ₇ H ₁₅	4	Cr 132.5 N* (112.9) BP (120) I	51
5-19	n-OC ₈ H ₁₇	4	Cr 149.1 SmA (145.4) N* 149 BP 149.8 I	51
5-20	<i>n</i> -OC ₉ H ₁₉	4	Cr 144.2 SmA 148.9-TGB ^b -N*-(BP) ^b -150.5 I	51
5-21	n-OC ₂ H ₅	5	Cr 189.9 I	51
5-22	<i>n</i> -OC ₄ H ₉	5	Cr 156.1 N* (146.4) BP (147.7) I	51
5-23	n-OC ₅ H ₁₁	5	Cr 150.7 N* (141.5) BP (142.9) I	51
5-24	<i>n</i> -OC ₆ H ₁₃	5	Cr 148.3 N* (135.9) BP (137.3) I	51
5-25	<i>n</i> -OC ₇ H ₁₅	5	Cr 147 N* (138.5) BP (139.8) I	51
5-26	<i>n</i> -OC ₈ H ₁₇	5	Cr 144.5 N* (136.8) BP (138.7) I	51
5-27	<i>n</i> -OC ₉ H ₁₉	5	Cr 141.5 N* (134.9) BP (136.8) I	51
5-28	n-OC ₁₀ H ₂₁	5	Cr 138 SmA (132.9) N* (133.4) BP (135.7) I	51
5-29	<i>n</i> -OC ₁₁ H ₂₃	5	Cr 136.4 SmA (134.3) N* (135.2) I	51
5-30	<i>n</i> -OC ₁₂ H ₂₅	5	Cr 135.1 SmA 137.2 I	51
5-31	n-OC ₂ H ₅	7	Cr 151 N* (136.5) BP (140.8) I	51
5-32	n-OC ₄ H ₉	7	Cr 161.1 N* (147.7) I	51
5-33	<i>n</i> -OC ₅ H ₁₁	7	Cr 148.1 N* (128.2) BP (131.2) I	51
5-34	<i>n</i> -OC ₆ H ₁₃	7	Cr 152.2 N* (128.8) BP (130.2) I	51
5-35	n-OC ₇ H ₁₅	7	Cr 128.4 N* BP (129) 130 .2 I	51
5-36	<i>n</i> -OC ₈ H ₁₇	7	Cr 126.6 N* BP (128.8) 129.7 I	51
5-37	<i>n</i> -OC ₉ H ₁₉	7	Cr 123.7 SmA –TGB ^b -N* ^b BP (126.7) 128 I	51
5-38	n-OC ₁₀ H ₂₁	7	Cr 119.8 SmA 125.5 N* -BP ^b 128 I	51
5-39	<i>n</i> -OC ₁₁ H ₂₃	7	Cr 116 SmA 117.8-TGB ^b -N* 121 BP 122.5 I	51
5-40	<i>n</i> -OC ₁₂ H ₂₅	7	Cr 121 SmA 120.9-TGB ^b -N* 123 BP 123.9 I	51

^a The transition between different crystalline forms have not been considered; only the crystalline form melting (temperature) into the mesophase is mentioned. ^b A very short lived phase.

6. Bent-core (banana-shaped) systems

Table S6: Thermal behavior of cholesterol-based dimers comprising five-ring bent-core system. BP = Blue phase III; M_{x1} , M_{x2} and M_{x3} = unknown tilted smectic mesophases; Col_{r1} and Col_{r2} = rectangular columnar phases.

Dimers	n	Х	Phase sequence and transition	Ref.
			temperatures in °C	
6-1	3	Н	Cr 145.6 M _{x1} (124.1) N* 153 BP 171.5 I	52
6-2	3	OH	Cr 158.1 M _{x1} (154.2) N* 167 BP 186.3 I	52
6-3	4	Н	Cr 122 Col _r 137.8 I	52
6-4	4	OH	Cr 141.9 Col _r 149.5 I	52
6-5	5	Η	Cr 145.9 M_{x2} (108.9) Col_{r2} (112.6) Col_{r1} (118.4) N* 153 BP 164.2 I	52
6-6	5	OH	Cr 151.2 M _{x3} (52) N* 160 BP 175.5 I	52
				53
6-7	7	Н	Cr 122.6 Col _r (114.7) N* 140 BP 152.6 I	52
6-8	7	OH	Cr 156.8 Col _r (138.9) N* (144) BP 163.5 I	52

7. Cyclohexanes

 Table S7: Phase behavior of cholesterol-based dimers having cyclohexane-aromatic mesogenic segment.

F			(
-			_//		
Dimer	rs R	L	n	Phase sequence and transition temperatures in °C	Ref.
7-1	$n-C_5H_{11}$	COO	3	Cr 126.4 TGBC* (101.2) SmA 163.4 TGB 167.5 N* 210 I	54
7-2	n-C ₅ H ₁₁	COO	4	Cr 94.8 N* 157.3 I	54
7-3	$n-C_5H_{11}$	COO	5	Cr 94.6 TGBC* 133.8 N* 190 I	54
7-4	$n-C_5H_{11}$	COO	7	Cr 136 N* 174 4.I	54
7-5	$n-C_3H_7$	-	3	Cr 145.5 N* 187.6 I	55
7-6	<i>n</i> -C ₄ H ₉	-	3	Cr 103.8 SmA 146.9 N* 186.7 I	55
7-7	$n-C_5H_{11}$	-	3	Cr 122.3 SmA 164.0 N* 192.8 I	55
7-8	$n-C_{6}H_{13}$	-	3	Cr 106.3 SmA 163.3 N* 183.2 I	55
7-9	$n-C_7H_{15}$	-	3	Cr 128.5 SmA 172.7 N* 185.2 I	55
7-10	$n-C_8H_{17}$	-	3	Cr 138.0 SmA 177.3 N* 184.0 I	55
7-11	$n-C_9H_{19}$	-	3	Cr 116.7 SmA 162.1 N* 172.5 I	55
7-12	<i>n</i> -C ₃ H ₇	-	4	Cr 105.8 N* 114.8 I	55
7-13	<i>n</i> -C ₄ H ₉	-	4	Cr 64.1 N* 98.5 I	55
7-14	n-C ₅ H ₁₁	-	4	Cr 82.5 SmA 107.0 N* 132.3 I	55
7-15	$n-C_{6}H_{13}$	-	4	Cr 97.3 SmA 109.7 N* 129.0 I	55
7-16	$n-C_7H_{15}$	-	4	Cr 85.0 SmA 126.1 N* 134.0 I	55
7-17	$n-C_8H_{17}$	-	4	Cr 96.0 SmA 121.1 N* 134.1 I	55
7-18	$n-C_9H_{19}$	-	4	Cr 71.1 SmA 128.0 N* 133.2 I	55
7-19	<i>n</i> -C ₃ H ₇	-	5	Cr 103.3 N* 141.1 I	55
7-20	<i>n</i> -C ₄ H ₉	-	5	Cr 101.8 N* 164.0 I	55
7-21	$n-C_5H_{11}$	-	5	Cr 84.9 N* 172.8 I	55
7-22	$n-C_{6}H_{13}$	-	5	Cr 99.7 SmA 138.2 N* 169.4 I	55
7-23	$n-C_7H_{15}$	-	5	Cr 123.0 SmA 138.5 N* 161.2 I	55
7-24	$n-C_8H_{17}$	-	5	Cr 111.1 SmA 152.1 N* 166.8 I	55
7-25	$n-C_9H_{19}$	-	5	Cr 97.7 SmA 155.5 N* 165.0 I	55

7-26	$n-C_3H_7$	-	7	Cr 116.5 N* 154.7 I	55
7-27	<i>n</i> -C ₄ H ₉	-	7	Cr 103.7 N* 154.3 I	55
7-28	$n-C_5H_{11}$	-	7	Cr 98.1 N* 157.6 I	55
7-29	<i>n</i> -C ₆ H ₁₃	-	7	Cr 91.4 N* 154.6 I	55
7-30	$n-C_7H_{15}$	-	7	Cr 85.6 N* 152.0 I	55
7-31	<i>n</i> -C ₈ H ₁₇	-	7	Cr 77.8 SmA 125.1 N* I	55
7-32	<i>n</i> -C ₉ H ₁₉	-	7	Cr 91.2 SmA 130.7 149.3 I	55

8. Phenylbenzoates (esters)

Table S8: Phase behavior of cholesterol-based dimers having phenylbenzoate core

Dimers	R	L	n	Phase sequence and transition temperatures in °C	Ref.
8-1	n-C ₄ H ₉	COO	5	Cr 119 Sm _{q1} 142 TGB _{q1} 144 N* 180.8 I	24
8-2	<i>n</i> -C ₄ H ₉	OOC	5	Cr 85 N* 175.5 I	24
8-3	CN	COO	3	Cr 120.8 SmA 201.5-TGB ^a -N* 224.6 I	54
8-4	CN	COO	4	Cr 108.6 SmA 159.1-TGB ^a -N* 179.1 I	54
8-5	CN	COO	5	Cr 84.2 SmC* (58.6) SmA 178.2-TGB ^a -N* 212.7 I	54
8-6	CN	COO	7	Cr 96 SmA 148.5-TGB ^a -N* 187.2 I	54

^a An enantiotropic transient phase;

9. Salicylaldimines

Dimers	R	Phase sequence and transition temperatures in °C	Ref.
9-1	<i>n</i> -C ₄ H ₉	Cr 130.1 SmA 74.9 N* 203 I	56
9-2	$n - C_{10}H_{21}$	Cr 120.3 SmC* 153.6 SmA 185.6 N* 187.2 I	57 56 57
9-3	$0 \downarrow_2 \downarrow_3$	Cr 116.7 SmC* 146.4 SmA 176.5 N* 179.6 I	56 57

10. Stilbenes (trans-1,2-diphenylethylenes)

Table S10: Phase behavior of cholesterol-based dimers comprising stilbene moiety.

Dimers	R	Phase sequence and transition temperatures in °C	Ref.
10-1	n-C ₄ H ₉	Cr 125 Sm _{q3} 190 TGB _{q3} 191.7 N* 206.5 I	24
10-2	n-OC ₈ H ₁₇	Cr 133.6 SmA 204.7 N* 210.9 I	21
10-3	<i>n</i> -OCH ₂ (CF ₂) ₆ CF ₃	Cr 143.8 SmA 251.9 I	21

11. Diphenylbutadienes

Table S11: Liquid crystal behavior of cholesterol-based dimers having diphenylbutadiene core. Cr_1 and Cr_2 = Crystalline states.

Dimers	п	Phase sequence and transition temperatures in °C	Ref.
11-1	8	Cr ₁ 99.5 SmA 112.8 Cr ₂ 131.9 SmA 134 TGBA 138 N* 202.9 I	58
11-2	11	Cr 120.9 SmA 145.5 N* 175 I	58
11-3	12	Cr ₁ 109.4 SmA 112.8 Cr ₂ 129.5 N* 188.1 I	58

12. Terphenyls

Table S12: Phase transitional properties of cholesterol-based dimers featuring terphenyl segment.

Dimers	n	Phase sequence and transition temperatures in °C	Ref
12-1	3	Cr 120 SmA 112 I	44
12-2	4	Cr 113 SmA 153 I	44
12-3	5	Cr 107 SmA 117 I	44
12-4	6	Cr 101 SmA 139 I	44
12-5	7	Cr 88 SmA 115 I	44
12-6	10	Cr 94 SmA 124 I	44

13. Sydnones

 Table S13: Phase behavior of cholesterol-based dimers possessing sydnone core.

Dimers	n	Phase sequence and transition temperatures in °C	Ref
13-1	3	Cr 230 SmA 265 ^a	59
13-2	4	Cr 162 SmA 210 ^a	59
13-3	5	Cr 170 SmA 215 ^a	59
13-4	7	Cr 242 SmA 270 ^a	59

^a SmA – I has not been ascertained by either microscopy or calorimetric techniques, owing to thermal degradation above this temperature.

14. Supramolecular (H-bonded) systems

Table S14^a: Thermal behavior of supramolecular cholesterol-based dimers. $Sm_{LT} = Low$ temperature smectic phase; $Sm_{HT} = High$ temperature smectic phase

Dimers	R	L	n	Phase sequence and transition temperatures in °C	Ref
14-1	$4-(n-OCH_3)C_6H_4COO$	СН=СН	2	Cr 133.7 SmC* 190 N* 229.3 I	22
14-2	$4-(n-OC_2H_5)C_6H_4COO$	СН=СН	2	Cr 152.2 SmC* 186 N* 234.6 I	22
14-3	$4-(n-OC_3H_7)C_6H_4COO$	СН=СН	2	Cr 145.6 SmC* 187 N* 224.4 I	22
14-4	$4-(n-OC_4H_9)C_6H_4COO$	СН=СН	2	Cr 157 SmC* 183 N* 231.4 I	22
14-5	$4-(n-OC_5H_{11})C_6H_4COO$	CH=CH	2	Cr 149.2 SmC* 185 N* 226.4 I	22
14-6	$4-(n-OC_6H_{13})C_6H_4COO$	CH=CH	2	Cr 148.5 SmC* 190 N* 222.3 I	22
14-7	$4-(n-OC_7H_{15})C_6H_4COO$	CH=CH	2	Cr 150.7 SmC* 187.2 N* 219.1 I	22
14-8	$4-(n-OC_8H_{17})C_6H_4COO$	СН=СН	2	Cr 151.8 SmC* 195.3 N* 218.7 I	22
14-9	$4-(n-OC_{10}H_{21})C_6H_4COO$	СН=СН	2	Cr 148.8 SmC* 190.6 N* 209.1 I	22
14-10	n-OC ₂ H ₅	N=CH	2	Cr 113.8 SmA 126 N* 156.6 I	22
14-11	n-OC ₅ H ₁₁	N=CH	2	Cr 103.1 SmA 140 N* 149.6 I	22
14-12	n-OC ₇ H ₁₅	N=CH	2	Cr 115.4 N* 144.9 I	22
14-13	n-OC ₁₀ H ₂₁	N=CH	2	Cr 110 SmA 120 N* 141.4 I	22
14-14	$4-(n-OC_4H_9)C_6H_4COO$	N=CH	4	Cr 126 Sm _{LT} (116) Sm _{HT} 145 N* I	60
14-15	$4-(n-OC_{10}H_{21})C_6H_4COO$	N=CH	4	Cr 126 Sm 135 N* 192 I	60

^a The transition between different crystalline forms have not been considered; only the crystalline form (temperature) melting into the mesophase is mentioned