Electronic Supplementary Information for

"Synthesis of PPEGMEA-g-PMAA Densely Grafted Double Hydrophilic Copolymer and

Using It as Template for the Preparation of Size-controlled Superparamagnetic

Fe₃O₄/Polymer Nano-Composite"

Lina Gu,^a Zhong Shen,^a Chun Feng,^a Yaogong Li,^a Guolin Lu,^a Xiaoyu Huang,*^a Guowei Wang^b and Junlian Huang*^b

^{*a*} Laboratory of Polymer Materials and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P.R. China

^b The Key Laboratory of Molecular Engineering of Polymer, State Education Ministry of China, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China

Experimental Section

Materials

Poly(ethylene glycol) methyl ether acrylate (PEGMEA, $M_n = 454$, Aldrich, 99%) was passed through a column filled with basic alumina. Copper (I) bromide (CuBr, Aldrich, 98%) was purified by stirring overnight over acetic acid at room temperature, followed by washing the solid with ethanol, diethyl ether and acetone prior to drying at 40°C under vacuum for 1 day. Tris(2-(dimethylamino)ethyl)amine (Me₆TREN)¹ and methoxymethyl methacrylate (MOMMA)² were synthesized according to previous literatures.

Diisopropylamine (Aldrich, 99.5%) was dried over KOH for several days and distilled from CaH₂ under N₂ prior to use. *N*-phenyl-1-naphthylamine (PNA, Alfa Aesar, 97%) was purified by recrystallization in ethanol for three times. Tetrahydrofuran (THF) was dried over CaH₂ for seven days and distilled from sodium and benzophenone under N₂ prior to use. Methyl 2-bromopropionate (2-MBP, Acros, 99%), 2-bromopropionyl chloride (Acros, 99%), *n*-butyllithium (*n*-BuLi, Aldrich, 1.6 M in hexane), *N*,*N*,*N*',*N*''-pentamethyldiethylenetriamine (PMDETA, Aldrich, 99%) and hexamethyltriethylenetetramine (HMTETA, Aldrich, 99%) were used as received.

Measurements

FT-IR spectra were recorded on a Nicolet AVATAR-360 FT-IR spectrophotometer with 4 cm⁻¹ resolution. All ¹H NMR and ¹³C NMR analyses were performed on a Varian Mercury 300 spectrometer (300 MHz) in CDCl₃, DMSO-*d*₆ and D₂O, TMS (¹H NMR) and CDCl₃ (¹³C NMR) were used as internal standards. Elemental analysis was carried out on a Carlo-Erba 1106 system. Bromine content was determined by the titration with Hg(NO₃)₂. Conversion of methoxymethyl methacrylate was determined by gas chromatography (GC) using a HP 6890 system with an SE-54 column. Relative molecular weights and molecular weight distributions were measured by conventional gel permeation chromatography (GPC) system equipped with a Waters 1515 Isocratic HPLC pump, a Waters 2414 refractive index detector and a set of Waters Styragel columns (HR3, HR4 and HR5, 7.8×300 mm). GPC measurements were carried out at 35°C using THF as the eluent with a flow rate of 1.0 mL/min. The system was calibrated with polystyrene standards. The absolute molecular weights were determined by GPC equipped with a

multi-angle light scattering detector (GPC/MALS). THF was used as the eluent with a flow rate of 1.0 mL/min. Detectors: Wyatt Optilab rEX refractive index detector and Wyatt DAWN HELEOS 18-angle light scattering detector with a 50 mW solid-state laser operating at 658 nm. Steady-state fluorescent spectra of PNA were measured on a Hitachi FL-4500 spectrofluorometer with the band width of 5 nm for excitation and emission, the emission intensity at 418 nm was recorded to determine the critical micelle concentration with a $\lambda_{ex} = 340$ nm. Thermogravimetric analysis (TGA) measurements were run with a Perkin-Elmer Pyris 1 system, the temperature ranged between 50°C and 800°C with a heating rate of 30°C/min under N₂. Transmission Electron Microscope (TEM) images were obtained using a Philips CM120 instrument operated at 80 kV. The hydrodynamic diameter $(D_{\rm h})$ and zeta potential of Fe₃O₄/polymer nano-composite were measured by dynamic laser light scattering (DLS) using a Malvern Nano-ZS90 Zetasizer. The crystal structure of nano-composite was investigated by X-ray diffraction (XRD) using a Philips X'Pert PRO X-ray powder diffractometer with CuKa (1.541 Å) radiation (40 kV, 40 mA), the samples were exposed at a scan rate of $2\theta = 0.04244^{\circ}/s$ in the range of 25° and 65° . The magnetizations curve of Fe₃O₄/polymer nano-composite was measured by an EG & G Princeton Applied Research 155 Vibrating Sample Magnetometer (VSM) at room temperature with a maximum applied field of 3 T.

Homopolymerization of PEGMEA by ATRP

ATRP of PEGMEA was carried out in H₂O/THF under N₂. To a 25 mL Schlenk flask (flame-dried under vacuum prior to use) sealed with a rubber septum, CuBr (0.1722 g, 1.2 mmol) was first added for degassing and kept under N₂. Next, PEGMEA ($M_n = 454$,

10 mL, 24 mmol) and Me₆TREN (0.162 mL, 1.2 mmol) were introduced via a gastight syringe, and the mixture was stirred for several minutes. Then, the mixed solvent, H_2O/THF (v:v = 10:1, 10.3 mL) which was purged with N_2 for 10 min and mixed under N₂, was added via a gastight syringe. Finally, the initiator, 2-MBP (0.134 mL, 1.2 mmol) was charged via a gastight syringe. The solution was degassed by three cycles of freeze-pump-thaw followed by immersing the flask into an oil bath set at 40°C to start the polymerization. The flask was cooled by liquid nitrogen to terminate the polymerization after 5 hours. THF was added for dilution and the solution was filtered through a short Al₂O₃ column to remove the copper catalyst. The resulting solution was concentrated and precipitated into hexane. After repeated purification by dissolving in THF and precipitating in hexane, 9.403 g of poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA 1) was obtained with a yield of 86.3%. GPC: $M_n = 5,400$, $M_w/M_n = 1.09$. FI-IR (film), v (cm⁻¹): 2869, 1728 (C=O), 1455, 1109 (C-O-C), 952. ¹H NMR: δ (ppm): 0.86 (3H, CH₃CH), 1.26, 1.65 (2H, CH₂CH), 2.18 (1H, COCH(CH₃)CH₂), 2.22-2.53 (1H, CH₂CH), 3.39 (3H, OCH₃), 3.68 (4H, OCH₂CH₂O), 3.88 (3H, COOCH₃), 4.18 (2H, COOCH₂CH₂O), 4.33 (1H, CHBr). ¹³C NMR: δ (ppm): 26.0, 29.7 (CH₂CH), 35.2, 38.9 (CH₂CH), 55.1 (CH₂OCH₃), 59.4-72.6 (OCH₂CH₂O), 174.0 (COOCH₂).

The conversion of PEGMEA macromonomer was determined by ¹H NMR spectrum according to previous literature.³ The procedure was same with the above-mentioned polymerization except that the mixed solvent was changed to D_2O/THF (v:v = 10:1). The conversion of the macromonomer was 100% since the signal of the double bond of the macromonomer was not found in ¹H NMR spectrum.

Synthesis of PPEGMEA-Br 2 Macroinitiator

In a 500 mL sealed three-neck flask, dried THF (40 mL) and diisopropylamine (1.12 mL, 8 mmol) were added under N₂. The solution was cooled to -78°C and *n*-BuLi (5 mL, 8 mmol) was added slowly. After 1 hour, the mixture was treated with PPEGMEA 1 $(3.632 \text{ g}, M_n = 5,400, M_w/M_n = 1.09)$ in 160 mL of dried THF under -78°C. The reaction lasted for 3 hours. Next, 2-bromopropionyl chloride (0.8 mL, 8 mmol) in 10 mL of dried THF was introduced. After 3 hours, the reaction was terminated by water. The solution was concentrated and dialyzed in water for a day. The aqueous solution was extracted by CHCl₃ and dried over NaSO₄ overnight. After filtration, the solution was concentrated, and precipitated into hexane. The product was dried under vacuum to give 3.8279 g of PPEGMEA-Br 2 macroinitiator. GPC: $M_n = 5,000$, $M_w/M_n = 1.03$. FT-IR (film): v (cm⁻¹): 2871, 1734, 1453, 1351, 1105, 951, 855. ¹H NMR: δ (ppm): 0.86 (3H, CH₃CH), 1.26, 1.71 (2H, CH₂-CH), 1.90 (3H, CH(CH₃)Br), 2.28 (1H, COCH(CH₃)CH₂), 3.38 (3H, -OCH₃), 3.67 (4H, OCH₂CH₂O), 3.89 (3H, COOCH₃), 4.19 (2H, COOCH₂CH₂O), 4.33 (1H, CHBr). ¹³C NMR: δ (ppm): 18.7-21.0 (CH(CH₃)Br), 26.2-34.0 (CH₂ on PPEGMEA backbone), 41.0, 42.3 (CH on PPEGMEA backbone), 47.1 (CH(CH₃)Br), 52.2 (tert-C on PPEGMEA backbone), 54.7 (CH₂OCH₃), 58.6-72.4 (OCH₂CH₂O), 169.7-174.0 (O-C=O), 211.1 (C=O). Element analysis: C% = 50.06%, Br% = 10.06%.

Synthesis of PPEGMEA-g-PMOMMA 3 Graft Copolymer

PPEGMEA-g-PMOMMA **3** amphiphilic graft copolymer was synthesized by ATRP of MMOMA initiated by PPEGMEA-Br **2** macroinitiator. CuBr and PPEGMEA-Br **2** macroinitiator ($M_n = 5,000, M_w/M_n = 1.03$) in THF were added to a 25 mL Schlenk flask

(flame-dried under vacuum prior to use) sealed with a rubber septum under N₂. After three cycles of evacuating and purging with N₂, MMOMA and diphenyl ether (internal standard of GC measurement for the conversion of MMOMA) were charged via a gas-tight syringe. Finally, Me₆TREN was introduced via a gas-tight syringe. The flask was degassed by three cycles of freezing-pumping-thawing followed by immersing the flask into an oil bath set at 30°C. The polymerization was terminated by putting the flask into liquid nitrogen after certain time. The reaction mixture was diluted by THF and passed through an alumina column to remove the residual copper catalyst. The solution was concentrated and precipitated into cold ether. The white viscous solid was dried under vacuum overnight to obtain the final product, poly[poly(ethylene glycol) methyl ether acrylate]-*g*-poly(methoxymethyl methacrylate) (PPEGMEA-*g*-PMOMMA **3**). FT-IR (film): v (cm⁻¹): 2960, 2833, 1737, 1487, 1394, 1152, 1075, 918. ¹H NMR: δ (ppm): 0.88, 1.02 (3H, CCH₃), 1.40-2.20 (2H, CH₂ and 1H, CH), 3.41 (3H, OCH₂OCH₃), 3.50 (4H, OCH₂CH₂O), 5.17 (2H, OCH₂O). The data of relative molecular weight, molecular weight distribution and absolute molecular weight are listed in Table 1.

Determination of Critical Micelle Concentration of PPEGMEA-g-PMOMMA 3

PNA was used as fluorescence probe to measure the critical micelle concentration (*cmc*) of PPEGMEA-*g*-PMOMMA **3**. The acetone solution of PNA (1 mmol/L) was added to a large amount of water until the concentration of PNA reached 2×10^{-6} mol/L. Different amounts of THF solutions of PPEGMEA-*g*-PMOMMA **3** (1 mg/mL, 0.1 mg/mL or 0.001 mg/mL) were added to water containing PNA ([PNA] = 2×10^{-6} mol/L). All fluorescence spectra were recorded at 20° C.

TEM Images of PPEGMEA-g-PMOMMA 3

To prepare micelles, THF solution of PPEGMEA-g-PMOMMA **3** (0.2 mg/mL) was filtered through a membrane with a nominal pore size of 0.2 mm. Next, 0.25 mL of de-ionized water was added to 1.00 g of THF solution by a micro-syringe and the solution was dialyzed against water with stirring for 5 days. For TEM studies, a drop of micellar solution was deposited on an electron microscopy copper grid coated with carbon film.

Hydrolysis of PMOMMA Side Chains

PPEGMEA-*g*-PMOMMA **3** was dissolved in THF and treated with excess 1 M HCl at room temperature for 5 hours. The reaction mixture was concentrated and precipitated into dichloromethane. After filtration, the white powder was dried overnight at 40°C under vacuum to obtain PPEGMEA-*g*-PMAA **4** densely grafted double hydrophilic copolymer. FT-IR (film): v (cm⁻¹): 3700-2700 (broad, -COOH), 1705, 1485, 1391, 1266, 1176. ¹H NMR: δ (ppm): 0.92, 1.02 (3H, CCH₃), 1.42-2.1 (2H, CH₂ and 1H, CH), 3.50 (4H, OCH₂CH₂O), 12.38 (1H, COOH).

Preparation of Fe₃O₄/Polymer Nano-Composite

In a typical process, 0.602 g of PPEGMEA-g-PMAA **4a**, 0.2910 g of FeCl₃·6H₂O and 0.1116 g of FeCl₂·4H₂O were dissolved in 50 mL of water with vigorous stirring of 400 rpm at room temperature under N₂. To initiate the formation of Fe₃O₄, 1 M NaOH was added to basify the solution until the color turned from orange to black. The reaction lasted for 30 minutes under N₂. Next, the temperature was raised to 80°C for the

maturation of the crystal. Nano-composites were purified and harvested by ultra-centrifugation of 10,000 rpm for 20 minutes followed by lyophilization.

Sample of native Fe₃O₄ nano-particles were prepared under the same condition just without the double hydrophilic graft polymer as template.

References and Notes

- (1) Queffelec, J.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 2000, 33, 8629.
- (2) Harada, R.; Kondo, H. Bull. Chem. Soc. Jpn. 1968, 41, 2521.
- (3) Wang, X. S.; Armes, S. P. Macromolecules 2000, 33, 6640.