Electronic Supplementary Information for

Dipole-driven self-assembly of redox-active mesogenic tetracyanoanthraquinodimethanes

Kyosuke Isoda, Takuma Yasuda, and Takashi Kato*

Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Materials and Syntheses. All reagents and solvents were purchased from Aldrich, Tokyo Kasei, Kanto Chemical, or Wako, and used as received. Benzoic acids (8–10) having various number of alkoxy chains were prepared by the procedures of the literature.¹ All reactions were performed under an Ar atmosphere in dry solvents, unless otherwise noted.

2,6-Bis(3,4-didodecyloxybenzoyloxy)-11,11,12,12-tetracyanoanthraquinodimetha ne (2a). This compound was prepared from **5a** (0.83 g, 0.7 mmol), malononitrile (0.69 g, 10.5 mmol), TiCl₄ (0.4 mL), and pyridine (1.1 mL) in dry CH₂Cl₂ (30 mL) by adopting the procedure used for **1a**. The product was purified by column chromatography (silica, CHCl₃/hexane = 1:6, v/v), recrystallized from CHCl₃/methanol, and dried under vacuum to afford **2a** as a bright orange solid (0.27 g, 30%). ¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, *J* = 8.8 Hz, 2H), 8.16 (d, *J* = 2.0 Hz, 2H), 7.83 (dd, *J* = 8.4 and 2.0 Hz, 2H), 7.64 (d, *J* = 2.0 Hz, 2H), 7.60 (dd, *J* = 8.8 and 2.0 Hz, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 4.12-4.04 (m, 8H), 1.92-1.80 (m, 8H), 1.57-1.43 (m, 8H), 1.42-0.90 (m, 64H), 0.89-0.85 (m, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 163.98, 158.92, 154.57, 154.03, 148.80, 131.83, 129.27, 127.06, 125.99, 124.96, 121.51, 119.81, 114.55, 112.87, 112.65, 111.86, 83.40, 69.40, 69.10, 31.92, 29.69, 29.65, 29.62, 29.60, 29.40, 29.36, 29.13, 28.98, 25.99, 25.94, 22.69, 14.13. Anal. Calcd for C₈₂H₁₁₂N₄O₈: C, 76.84; H, 8.81; N, 4.37%. Found: C, 76.65; H, 9.03; N, 4.07%.

2, 6-Bis (3, 4-ditet radecy loxy benzoy loxy) - 11, 11, 12, 12-tet racy anoanthraquino dimethane (2b). This compound was prepared from 5b (0.65 g, 0.5 mmol), malononitrile (0.50 g, 7.5 mmol), TiCl₄ (0.7 mL), and pyridine (0.8 mL) in dry CH₂Cl₂ (30 mL) by adopting the procedure used for 1a. The product was purified by column chromatography (silica, CHCl₃/hexane = 1:6, v/v), recrystallized from CHCl₃/methanol, and dried under vacuum to afford **2b** as a bright orange solid (0.51 g, 73%). ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, J = 8.8 Hz, 2H), 8.16 (d, J = 2.4 Hz, 2H), 7.83 (dd, J = 8.4 and 2.4 Hz, 2H), 7.64 (d, J = 2.0 Hz, 2H), 7.60 (dd, J = 8.8 and 2.4 Hz, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 4.12-4.04 (m, 8H), 1.90-1.80 (m, 8H), 1.54-1.43 (m, 8H), 1.42-0.90 (m, 80H), 0.89-0.85 (m, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 163.98, 158.94, 154.57, 154.04, 148.81, 131.83, 129.28, 127.07, 125.99, 124.96, 121.51, 119.82, 114.55, 112.87, 112.65, 111.86, 83.40, 69.41, 69.11, 31.92, 29.71, 29.67, 29.63, 29.61, 29.41, 29.36, 29.14, 28.99, 26.00, 25.95, 22.69, 14.13. Anal. Calcd for C₉₀H₁₂₈N₄O₈: C, 77.54; H, 9.26; N, 4.02%. Found: C, 77.32; H, 9.41; N, 3.88%.

2,6-Bis(4-dodecyloxybenzoyloxy)-11,11,12,12-tetracyanoanthraquinodimethane

(3a). This compound was prepared from **6a** (0.80 g, 9.8 mmol), malononitrile (0.97 g, 14.7 mmol), TiCl₄ (0.54 mL), and pyridine (1.6 mL) in dry CH₂Cl₂ (80 mL) by adopting the procedure used for **1a**. The product was purified by column chromatography (silica, CHCl₃/ethyl acetate = 5:1, v/v), recrystallized from CHCl₃/methanol, and dried under vacuum to afford **3a** as a bright yellow solid (0.26 g, 29%). ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, *J* = 8.8 Hz, 2H), 8.16 (d, *J* = 2.0 Hz, 2H), 8.14 (d, *J* = 9.2 Hz, 4H), 7.61 (dd, *J* = 8.8 and 2.0 Hz, 2H), 6.99 (d, *J* = 9.2 Hz, 4H), 4.06 (t, *J* = 6.8 Hz, 4H), 1.83 (quint, *J* = 6.8 Hz, 4H), 1.56-1.43 (m, 4H), 1.40-0.95 (m, 32H), 0.89 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 164.25, 163.83, 158.91, 153.99, 132.72, 131.83, 129.27, 127.04, 125.95, 121.46, 119.85, 114.56, 112.88, 112.66, 83.39, 68.46, 31.91, 29.65, 29.63, 29.58, 29.54, 29.35, 29.03, 25.93, 22.69, 14.13. Anal. Calcd for C₅₈H₆₄N₄O₆: C, 76.29; H, 7.06; N, 6.14%. Found: C, 76.24; H, 7.30; N, 5.99%.

2,6-Bis(4-tetradecyloxybenzoyloxy)-11,11,12,12-tetracyanoanthraquinodimethan

e (**3b**). This compound was prepared from **6b** (2.00 g, 2.3 mmol), malononitrile (2.27 g, 34.4 mmol), TiCl₄ (1.3 mL), and pyridine (3.6 mL) in dry CH₂Cl₂ (80 mL) by adopting the procedure used for **1a**. The product was purified by column chromatography (silica, CHCl₃/ethyl acetate = 5:1, v/v), recrystallized from CHCl₃/methanol, and dried under vacuum to afford **3b** as a bright yellow solid (1.35 g, 61%). ¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, *J* = 8.8 Hz, 2H), 8.16 (d, *J* = 2.4 Hz, 2H), 8.14 (d, *J* = 8.8 Hz, 4H), 7.61 (dd, *J* = 8.8 and 2.4 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 4H), 4.06 (t, *J* = 6.4 Hz, 4H), 1.83 (quint, *J* = 6.4 Hz, 4H), 1.56-1.43 (m, 4H), 1.40-0.95 (m, 40H), 0.88 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 164.26, 163.83, 158.90, 154.00, 132.73, 132.54, 131.85, 129.28, 127.05, 125.94, 121.46, 119.88, 114.58, 112.88, 83.39, 68.48, 31.92, 29.68, 29.67, 29.65, 29.59, 29.54, 29.36, 29.05, 25.96, 22.69, 14.12. Anal. Calcd for C₆₂H₇₂N₄O₆: C, 76.83; H, 7.49; N, 5.78%. Found: C, 76.68; H, 7.54; N, 5.53%.

2,6-Bis(3,4,5-tridodecyloxybenzoyloxy)-9,10-anthraquinone This (**4a**). compound was prepared from 7 (0.50 g, 2.1 mmol), 8a (2.97 g, 4.4 mmol), 4-dimethylaminopyridine (DMAP, 0.26 2.1 mmol), and g, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC, 1.19 g, 6.2 mmol) in dry CH₂Cl₂ (20 mL) by adopting the procedure used for **6a**. The product was purified by column chromatography (silica, CHCl₃), recrystallized from CHCl₃/methanol, and dried under vacuum to give 4a as a light-yellow solid (2.79 g, 85%). ¹H NMR (400 MHz, CDCl₃): δ 8.42 (d, J = 8.4 Hz, 2H), 8.15 (d, J = 2.4 Hz, 2H), 7.67 (dd, J = 8.4 and 2.4 Hz, 2H), 7.43 (s, 4H), 4.10-4.04 (m, 12H), 1.90-1.72 (m, 12H), 1.58-1.15 (m, 108H), 0.90-0.86 (m, 18H). $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3): δ 181.45, 164.23, 155.96, 153.08, 143.54, 135.23, 131.05, 129.50, 127.73, 122.88, 120.47, 108.73, 73.65, 69.33, 31.92, 30.36, 29.73, 29.70, 29.66, 29.63, 29.57, 29.40, 29.36, 29.30, 26.07, 22.69, 14.11. Anal. Calcd for C₁₀₀H₁₆₀O₁₂: C, 77.27; H, 10.38%. Found: C, 77.09; H, 10.60%.

2,6-Bis(3,4,5-tritetradecyloxybenzoyloxy)-9,10-anthraquinone (**4b**). This compound was prepared from **7** (0.36 g, 1.5 mmol), **8b** (2.28 g, 3.0 mmol), DMAP (0.18 g, 1.5 mmol), and EDC (0.86 g, 4.5 mmol) in dry CH₂Cl₂ (50 mL) by adopting the procedure used for **6a**. The product was purified by column chromatography (silica, CHCl₃), recrystallized from CHCl₃/methanol, and dried under vacuum to give **4b** as a light-yellow solid (2.29 g, 89%). ¹H NMR (400 MHz, CDCl₃): δ 8.42 (d, *J* = 8.4 Hz, 2H), 8.15 (d, *J* = 2.4 Hz, 2H), 7.67 (dd, *J* = 8.4 and 2.4 Hz, 2H), 7.43 (s, 4H), 4.10-4.05 (m, 12H), 1.89-1.70 (m, 12H), 1.56-1.15 (m, 132H), 0.89-0.85 (m, 18H). ¹³C NMR (100 MHz, CDCl₃): δ 181.41, 164.21, 155.91, 153.04, 143.43, 135.18, 131.01, 129.43, 127.67, 122.85, 120.38, 108.67, 73.64, 69.33, 31.92, 30.35, 29.74, 29.70, 29.66, 29.63, 29.56, 29.38, 29.36, 29.29, 26.08, 22.68, 14.11. Anal. Calcd for C₁₁₂H₁₈₄O₁₂: C, 78.09; H, 10.77%. Found: C, 77.95; H, 10.91%.

2,6-Bis(3,4-didodecyloxybenzoyloxy)-9,10-anthraquinone (5a). This compound was prepared from **7** (0.48 g, 2.0 mmol), **9a** (1.96 g, 4.0 mmol), DMAP (0.24 g, 2.0 mmol), and EDC (1.15 g, 6.0 mmol) in dry CH₂Cl₂ (30 mL) by adopting the procedure used for **6a**. The product was recrystallized from THF and dried under vacuum to give **5a** as a light-yellow solid (1.30 g, 55%). ¹H NMR (400 MHz, CDCl₃): δ 8.41 (d, *J* = 8.8 Hz, 2H), 8.15 (d, *J* = 2.8 Hz, 2H), 7.85 (dd, *J* = 8.4 and 2.0 Hz, 2H), 7.69-7.66 (m, 4H), 6.96 (d, *J* = 8.4 Hz, 2H), 4.13-4.04 (m, 8H), 1.93-1.83 (m, 8H), 1.53-1.45 (m, 8H), 1.40-0.90 (m, 64H), 0.89-0.85 (m, 12H). Anal. Calcd for C₇₆H₁₁₂O₁₀: C, 76.99; H, 9.52%. Found: C, 76.73; H, 9.73%.

2,6-Bis(3,4-ditetradecyloxybenzoyloxy)-9,10-anthraquinone (5b). This compound was prepared from **7** (0.24 g, 1.0 mmol), **9b** (1.09 g, 2.0 mmol), DMAP (0.12 g, 1.0 mmol), and EDC (0.58 g, 3.0 mmol) in dry CH_2Cl_2 (20 mL) by adopting the procedure used for **6a**. The product was recrystallized from THF and dried under vacuum to give **5b** as a light-yellow solid (0.87 g, 67%). ¹H NMR (400 MHz, CDCl₃):

δ 8.41 (d, J = 8.8 Hz, 2H), 8.15 (d, J = 2.0 Hz, 2H), 7.85 (dd, J = 8.8 and 1.6 Hz, 2H), 7.69-7.66 (m, 4H), 6.96 (d, J = 8.8 Hz, 2H), 4.13-4.05 (m, 8H), 1.95-1.83 (m, 8H), 1.58-1.45 (m, 8H), 1.40-0.90 (m, 80H), 0.89-0.85 (m, 12H). Anal. Calcd for C₈₄H₁₂₈O₁₀: C, 77.73; H, 9.94%. Found: C, 77.59; H, 9.76%.

Figure S1. DSC thermograms of (a) **1a** and (b) **1b** at a scanning rate of 5 $^{\circ}$ C min⁻¹. Cr: crystalline; Col_h: hexagonal columnar; Iso: isotropic.

Figure S2. (a) XRD pattern of **1b** in the Col_h phase at 100 °C. The insets show the magnified views. (b) Schematic illustration of a hexagonal columnar structure. The intercolumnar distance (*a*) was calculated according to the equation : $a = d_{100} \times 2/\sqrt{3}$.

Figure S3. Temperature dependence of the XRD pattern and the intermolecular distance in the Col_h phase of **1a**.

Figure S4. Polarized optical micrographs of **6b** (a) in the nematic phase at 210 °C and (b) in the smectic C phase at 195 °C on cooling.

Figure S5. DSC thermograms of (a) **6a** and (b) **6b** at a scanning rate of 5 °C min⁻¹. Cr: crystalline; SmC: smectic C; N: nematic; Iso: isotropic.

Figure S6. XRD patterns of (a) **6a** and (b) **6b** in the SmC phase at 140 °C. The insets show the magnified views. (c) Schematic illustration of a layered SmC structure.

Figure S7. Top view of the columnar structure formed by 1a.

Solvent	1a	1b	2a	2b	3a	3b	4a	4b	5a	5b	6a	6b
Dodecane	G	G	Р	S	Ι	Ι	S	Р	Ι	Ι	Ι	Ι
Hexane	S	S	S	S	Ι	Ι	Р	Р	Ι	Ι	Ι	Ι
Cyclohexane	S	S	S	S	Ι	Ι	S	S	Ι	Ι	Ι	Ι
Dodecyl benzene	S	S	Р	Р	Ι	Р	S	S	Ι	Ι	Ι	Ι
1-Dodecanol	G	G	Р	Ι	Ι	Ι	Р	Р	Ι	Ι	Ι	Ι
THF	S	S	S	S	S	S	S	S	Р	Р	Р	Р
CHCl ₃	S	S	S	S	S	S	S	S	Р	Р	S	S
Ethyl acetate	S	S	Р	Р	S	S	Р	Р	Ι	Ι	Ι	Ι
Toluene	S	S	S	S	S	S	S	S	Р	Р	Р	Р
Acetone	Р	Р	Р	Р	S	S	Ι	Ι	Ι	Ι	Ι	Ι
CH ₃ OH	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι
DMF	Р	Р	Р	Р	Р	Р	Ι	Ι	Ι	Ι	Ι	Ι

Table S1. Gelation properties of $1-6^a$

^{*a*}The following abbreviations are used: G, gel; P, precipitation; S, solution; I, insoluble when heated. Tests were performed at 10 g L^{-1} for organic solvents.

Figure S8. DSC thermogram of the dodecan gel of **1a** at a scanning rate of $5 \,^{\circ}$ C min⁻¹.

Figure S9. SAXS pattern of the dodecane gel of **1a** at room temperature.

Compound	Redox potential ^{<i>a</i>} (V vs Ag^+/Ag)					
Compound	$E_{1/2}^{1}$	$E_{1/2}^{2}$				
1a	-0.46					
1b	-0.41					
2a	-0.42					
2b	-0.47					
3 a	-0.44					
3 b	-0.45					
4 a	-1.10	-1.63				
4 b	-1.10	-1.60				
5a	b	b				
5b	b	b				
6a	-0.99	-1.54				
6b	-1.02	-1.65				

Table S2.Electrochemical data of 1–6

 a Measured by cyclic voltammetry in a CH₂Cl₂ solution of Bu₄NClO₄ (0.10 M). b Not determined due to poor solubility.

Figure S10. Cyclic voltammogram of **6a** (2.0 mM) recorded in a CH_2Cl_2 solution of Bu_4NClO_4 (0.10 M). Sweep rate is 50 mVs⁻¹.

References.

 (a) V. Percec, D. Schlueter, J. C. Ronda, G. Johansson, G. Ungar and J. P. Zhou, *Macromolecules*, 1996, **29**, 1464; (b) G. S. Lim, B. M. Jung, S. J. Lee, H. H. Song, C.
Kim, and J. Y. Chang, *Chem. Mater.*, 2007, **19**, 460; (c) J. Ropponen, S. Nummelin and K. Rissanen, *Org. Lett.*, 2004, **6**, 2495; (d) V. Percec, J. G. Rudick, M. Peterca, M.
Wagner, M. Obata, C. M. Mitchell, W. D. Cho, V. S. K. Balagurusamy and P. A.
Heiney, *J. Am. Chem. Soc.*, 2005, **127**, 15257; (e) J. Barberá, L. Puig, P. Romero, J. L.
Serrano and T. Sierra, *J. Am. Chem. Soc.*, 2006, **128**, 4487.