Supplementary Information

Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on *N*,*N*,*N*',*N*'-tetraphenyl-*p*-phenylenediamine derivatives

Cha-Wen Chang^a and Guey-Sheng Liou*^b

 ^a Department of Applied Chemistry, National Chi Nan University, 1 University Road, Puli, Nantou Hsien 54561, Taiwan, Republic of China.
 ^b Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan, Republic of China.

Monomer synthesis

N,N-Bis(4-cyanophenyl)-*N',N'*-di(4-methoxyphenyl)-1,4-phenylenediamine (3). A mixture of 0.55 g (23 mmol) of sodium hydride and 40 mL of DMF was stirred, under nitrogen, at room temperature for about 30 min, and then 3.20g (10 mmol) of compound (2) were added. After the evolution of hydrogen was complete, 2.54 g (21 mmol) of 4-fluorobenzonitrile were added and the temperature maintained for 15 h at 150 °C. Next, the reaction mixture was poured into water, the crude product collected by filtration, and purified by washed with hexane/ethyl acetate to give 1.57 g (30 % in yield) of yellowish powder. Mp = 192-194 °C measured by DSC at 10 °C/min. IR (KBr): 2951, 2834 cm⁻¹ (OCH₃ C-H stretch), 2223 cm⁻¹ (C=N). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 3.72 (s, 6H, OCH₃), 6.76 (d, 2H, H_d), 6.91 (d, 4H, H_f), 6.97 (d, 2H, H_c), 7.07 (d, 4H, H_e), 7.09 (d, 4H, H_b), 7.68 (d, 4H, H_a). ¹³C NMR (75 MHz, DMSO-*d*₆, δ , ppm): 55.4 (OCH₃), 104.1 (C¹), 115.2 (C¹¹), 119.2(CN), 119.9 (C⁷), 122.1 (C³), 127.3 (C¹⁰), 128.6 (C⁶), 133.9 (C²), 136.0 (C⁸), 139.8 (C⁹), 147.4 (C⁵),

150.1 (C⁴), 156.3 (C¹²).

N,N-Bis(4-carboxyphenyl)-*N',N'*-di(4-methoxyphenyl)-1,4-phenylenediamine (4). A mixture of 6.00 g (107 mmol) of potassium hydroxide and 2.61 g (5 mmol) of the dinitrile compound (3) in 50 mL of ethanol and 25 mL of distilled water was stirred at about 100 $^{\circ}$ C until no further ammonia was generated. The time taken to reach this stage was about 5-6 days. The solution was cooled, and the pH value was adjusted by hydrochloric acid to near 3. The yellowish precipitate formed was collected by filtration and purified by recrystallization from acetic acid to give 2.25 g (80 % in yield) of the pure diacid. Mp: 323-324 $^{\circ}$ C measured by DSC at 10 $^{\circ}$ C/min. IR (KBr): 2700-3400 cm⁻¹ (O-H), 1682 (C=O). ¹H NMR (400 MHz, DMSO-*d*₆, δ , ppm): 3.71 (s, 6H, OCH₃), 6.76 (d, 2H, H_d), 6.89 (d, 4H, H_f), 6.95 (d, 2H, H_c), 7.04 (d, 4H, H_b), 7.06 (d, 4H, H_e), 7.82 (d, 4H, H_a), 12.61 (br, 2H, COOH). ¹³C NMR (100 Hz, DMSO-*d*₆, δ , ppm): 55.4 (OCH₃), 115.2 (C¹¹), 120.2 (C⁷), 121.5 (C³), 124.2 (C¹), 127.2 (C¹⁰), 128.2 (C⁶), 131.1 (C²), 137.1 (C⁸), 140.0 (C⁹), 146.7 (C⁵), 150.6 (C⁴), 156.1 (C¹²), 167.0 (C=O). Anal. Calcd for C₃₄H₂₈N₂O₆ (560.59): C, 72.84 %; H, 5.03 %; N, 5.00 %.

4,4'-diamidetriphenylamine (M2). A mixture of 0.275 g (1.00 mmol) of 4,4'-diaminoltriphenylamine, 0.256g (2.10 mmol) of benzoic acid, , 1.00 mL of triphenyl phosphite (TPP), 0.5 mL of pyridine (Py) and 1.00 mL of NMP was heated with stirring at 105 °C for 3 h. The mixture was poured slowly into 50 mL of stirring methanol washed, then was collected by filtration, and dried under vacuum at 100 °C; yield: 0.459 g (95 %). ¹H NMR (300 MHz, DMSO-*d*₆, δ , ppm): 6.95–7.03 (m, 7H, Ar), 7.26 (t, 2H, Ar), 7.49–7.58 (m, 6H, Ar), 7.74 (d, 4H, Ar), 7.93 (d, 4H, Ar). ¹³C NMR (75 MHz, DMSO-*d*₆, δ , ppm): 121.9, 122.1, 122.4, 124.5, 127.8, 128.5, 129.5, 131.6, 134.7, 135.2, 143.2, 147.8, 165.5.

Polymer synthesis

The synthesis of polyamide **6b** is used as an example to illustrate the general synthetic route. The typical procedure was as follows. A mixture of 0.500 g (0.89 mmol) of the dicarboxylic acid monomer (**4**), 0.179 g (0.89 mmol) of 4,4'-oxydianiline, 0.10 g of calcium chloride, 0.90 mL of TPP, 0.45 mL of Py, and 1.0 mL of NMP was heated with stirring at 105 $^{\circ}$ C for 3 h. The polymer solution was poured slowly into 300 mL

of stirring methanol giving rise to a stringy, fiber-like precipitate that was collected by filtration, washed thoroughly with hot water and methanol, and dried under vacuum at 100 °C; vield: 0.640 g (99 %). Precipitations from DMAc into methanol were carried out twice for further purification. The inherent viscosity of the obtained polyamide **6b** was 0.83 dL/g, measured at a concentration of 0.5 g/dL in NMP at 30 °C. The IR spectrum of **6b** (film) exhibited characteristic amide absorption bands at 3414 cm⁻¹ (N-H stretch), 3038 cm⁻¹ (aromatic C-H stretch), 2932, 2834 cm⁻¹ (OCH₃ C-H stretch), 1654 cm⁻¹ (amide carbonyl), 1240 cm⁻¹ (asymmetric stretch C-O-C), 1033 cm⁻¹ (symmetric stretch C-O-C). ¹H NMR (300 MHz, DMSO- d_6 , δ , ppm): 3.72 (s, 6H, OCH₃), 6.80 (d, 2H, H_d), 6.91 (d, 4H, H_f), 6.99 (d, 4H, H_h), 6.99 (d, 2H, H_c), 7.06 (d, 4H, H_e), 7.09 (d, 4H, H_b), 7.74 (d, 4H, H_e), 7.88 (d, 4H, H_a), 10.13 (s, 2H, NH-CO). ¹³C NMR (75 MHz, DMSO- d_6 , δ , ppm): 55.45 (OCH₃), 115.2 (C¹¹), 118.8 (C¹⁵), $120.5 (C^7)$, $121.6 (C^3)$, $122.2 (C^{14})$, $127.0 (C^{10})$, $128.0 (C^6)$, $128.4 (C^1)$, $129.4 (C^2)$, 135.1 (C^{13}), 137.9 (C^{8}), 140.2 (C^{9}), 146.4 (C^{5}), 149.8 (C^{4}), 152.9 (C^{16}), 156.1 (C^{12}), 164.9 (NH-CO). Anal. Calcd for $(C_{46}H_{36}N_4O_5)_n$ (724.80)_n: C, 76.23 %; H, 5.01 %; N, 7.73 %. Found: C, 74.99 %; H, 5.15 %; N, 7.70 %. The other polyamides were prepared by an analogous procedure.

Results and discussion

Monomer synthesis

The	new	aromatic	dicarboxy	lic acid
N,N-bis(4-car	boxyphenyl)-N',N'	-di(4-methoxyp	henyl)-1,4-phenyl	enediamine (4),
having bulky	pendent 4,4'-dime	thoxytriphenyla	mine group, was	synthesized in four
steps starting	from the aromatic	e nucleophilic s	substitution reaction	on of 4-nitroaniline
with 4-iodoan	nisole produced 4-n	itro-4',4"-dime	thoxytriphenylam	ine (1) (Scheme 1).
4-amino-4',4'	'-dimethoxytriphen	ylamine (2)	was prepared	d by hydrazine
Pd/C-catalyze	ed reduction	of th	e intermedia	ite compound,
4-nitro-4',4"-	dimethoxytripheny	lamine (1). Th	ne double-couplin	ng reaction of the
conjugate bas	se of 2 (1.0 equi	v) with 4-fluo	robenzonitrile (2.	1 equiv) produced
<i>N,N</i> -bis(4-cya	anophenyl)-N',N'-d	i(4-methoxyphe	nyl)-1,4-phenylen	ediamine (3). The
alkaline hydro	olysis of the dinitri	le compound 3	afforded the targ	et dicarboxylic acid
monomer 4. H	Elemental analysis,	IR, ¹ H and ¹³ C	NMR spectrosco	pic techniques were
used to identi	fy the structures of	the dicarboxyli	c acid monomer	4. The IR spectra of
dinitrile comp	pound 3 gave a ch	aracteristic shar	rp band at 2223 of	cm ⁻¹ peculiar to the
cyano group.	After hydrolysis,	the characteri	stic absorption o	f the cyano group
disappeared, a	and the carboxylic a	acid group show	ed a typical carbo	nyl absorption band
at 1682 cm ⁻¹	(C=O stretching) t	ogether with th	e appearance of	broad bands around
2700-3400 cm	n ⁻¹ (O-H stretching)	. Fig. S1 and S2	2 illustrate the ${}^{1}H$	NMR and ¹³ C NMR
spectra of cor	mpounds 3 and 4 , 1	respectively. As	signments of each	n carbon and proton
of monomer 4	4 are assisted by the	ne two-dimensio	onal (2D) NMR s	pectra (Fig. S3 and
S4), and these	e spectra agree well	with the propos	sed molecular stru	ectures of 4. The 13 C
NMR spectra	a confirm that the	cyano groups	were completely	converted into the
carboxylic ac	eid groups by the	disappearance of	of the resonance	peak for the cyano

carbon at 119.2 ppm and by the appearance of the carbonyl peak at 167.0 ppm. Other important evidence of this change is the shifting of the carbon resonance signals of C¹ adjacent to the cyano or carboxyl group. The C¹ carbons of dinitrile **3** resonated at a higher field (104.1 ppm) than the other aromatic carbons because of the anisotropic shielding by the π electrons of C \equiv N. After hydrolysis, the resonance peak of C¹ shifted to a lower field (124.2 ppm) because of the lack of an anisotropic field.

Fig. S1 (a) ¹H NMR and (b) ¹³C NMR spectrum of compound 3 in DMSO- d_6 .

¹³C NMR spectrum of compound 4 in DMSO- d_6 .

Fig. S3 H-H COSY spectrum of compound 4 in DMSO-*d*₆.

Fig. S4 C-H HMQC spectrum of compound 4 in DMSO-*d*₆.

Fig. S5 IR spectrum of polyamide 6b film.

Fig. S6 (a) ¹H NMR and (b) ¹³C NMR spectrum of polyamide 6b in DMSO- d_6 .

Fig. S7 C-H HMQC spectrum of polyamide 6b in DMSO-*d*₆.

	Solvents							
Polymer	NMP	DMAc	DMF	DMSO	<i>m</i> -cresol	THF	CHCl ₃	
6a	++	++	+	++	++	±	±	
6b	++	++	+	++	++	_	—	
6c	++	++	++	++	++	±	±	
6d	++	++	++	++	++	++	±	
6e	++	++	++	++	++	±	±	
6 f	++	++	++	++	++	++	±	
6g	++	++	++	++	++	±	±	

Table S1 Solubility^a of polyamides

^{*a*} Qualitative solubility was tested with 1 mg of a sample in 1 mL of stirred solvent. + +, soluble at room temperature; +, soluble on heating; \pm , partially soluble; -, insoluble even on heating.

Polymer	η_{inh}^{a} (dL/g)	Mw^b	Mn^b	PDI
6a	0.40	41,000	23,000	1.80
6b	0.83	66,000	33,000	1.98
6c	0.42	67,000	35,000	1.92
6d	0.29	36,000	19,000	1.87
6e	0.30	44,000	23,000	1.95
6f	0.24	34,000	18,000	1.93
6g	0.31	40,000	21,000	1.91

Table S2 Inherent viscosities and GPC data of polyamides

^{*a*} Measured at a polymer concentration of 0.5 g/dL in NMP at 30 °C.

^b Relative to polystyrene standards, using DMF as the eluent.

Fig. S8 WAXD patterns of the polyamide films.

Fig. S9 (a) TMA curve of polyamide **6a** with a heating rate of 10 °C/min and (b) TGA thermograms of polyamide **6b** at a scan rate of 20 °C/min.

Fig. S10 UV-vis transmission spectra of polyamide 6 series films (thickness: 1-3 µm).

Fig. S11 Cyclic voltammograms of (a) ferrocene (b) model compounds M1, M2 and polyamides M3 and M4 in CH_3CN containing 0.1 M TBAP at scan rate = 0.05 V/s.