New insights into the encapsulation and stabilization of heteropolyacids inside the pore walls of mesostructured silica materials

Véronique Dufaud,*¹ Frédéric Lefebvre,*² Gerald P. Niccolai³ and Mimoun Aouine⁴

Supporting Information for the Journal of Material Chemistry

Fig. S1 Thermogravimetric analysis of (a) 2; (b) and (c) 2-C and 2-CE

¹ Laboratoire de Chimie, UMR 5182 CNRS - Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France ; vdufaud@ens-lyon.fr ² Chimie, Catalyse, Polymères et Procédés UMR 5265 CNRS-CPE Lyon, 43 bd du 11 Novembre 1918, 69622

Villeurbanne cedex, France; lefebvre@cpe.fr

³ ICAR, UMR 5191 ENS LSH, 15 parvis Descartes, 69342 Lyon cedex 07, France.

⁴ Institut de Recherches sur la Catalyse et l'Environnement de Lyon, 2 avenue Albert Einstein, 69626 Villeurbanne cedex, France.

Fig. S2 FT-IR spectra of (a) 2; (b) 2-C; (c) 2-CE; (d) 2-E

* at ca. 1630 cm⁻¹ denotes for adsorbed residual water

Fig. S3 MAS ³¹P NMR spectra of (a) **2;** (b) **2-C;** (c) **2-CE** (second lot, W 28.5%_{wt})

Fig. S4 XRD pattern of 2-CE in the 3° to 80° (2 θ scale) region

Typical	TEM/EDX	analysis	on $H_3PW_{12}O_{40}$	encapsulated	into	SBA-15	silica	material
(28.55 ‰ _{wt} W ≅ 9.3 mol W per 100 atom Si) (2-CE second lot)								

Sampling #	Si (atom)	W (atom)
1	100	12.80
2	100	14.93
3	100	14.74
4	100	11.6

Fig. S5 TEM micrograph of **2-CE** (second lot), in the direction perpendicular to the pore axis (left) and along the direction of the pore axis (right)

Fig. S6 Nitrogen adsorption/desorption isotherm of **2-CE** (bottom) ; **2-E** (middle) ; **1-CE** (top)

Fig. S7 Pore size distribution (from the BJH calculations) of (a) 2-E ; (b) 2-CE

Fig. S8 Pore size distribution (from the BJH calculations) of 1-E

Fig. S9 DR UV-Vis of 2-CE (left) and of H₃PW₁₂O₄₀ (right)

Fig. S 10 Infrared spectra of $H_3PW_{12}O_{40}$, **2-CE**, **2-C**, and **1-CE**. One should note that for **2-C** and especially **2-CE**, one can discern the characteristic absorbances of the molecular species (top) around 630 and 980 cm⁻¹ (other characteristic peaks are masked by strong silica absorbances). Such peaks are lacking in the spectrum of **1-CE**.

Fig. S 11 Raman spectroscopy of $H_3PMo_{12}O_{40}$ encapsulated in SBA-15 type silica after calcination and extraction