Synthesis and Characterization of New Red Phosphors for White LED Applications

Xuyong Yang, JieLiu, Hong Yang, XiBin Yu^{*}, Yuzhu Guo, Yongqin Zhou, Jieyu Liu Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China

Figure 1 shows the TG/DTA curves in a synthetic air atmosphere for the decomposition of the precursor of BMO (Stoichiometric amounts of BaCO₃ and $(NH_4)_6Mo_7O_{24}\cdot 4H_2O)$). The thermogravimetric analysis (TGA curve) of the materials shows about two decomposition stages. The TGA indicated a minor weight loss (3.8%) between 190°C and 400°C, what corresponds to the decomposition of $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ and elimination of NH₃ and H₂O. The other weight loss (8.6%) occurs between 400°C and 700°C, which is due to the decomposition of BaCO₃ and elimination of CO₂. After 700°C, no obvious weight loss was observed.

Fig. S1 TG/DTA curves of the BMO precursor in synthetic air, using a constant heating rate of 10° C/min

^{*} Corresponding author. Tel.: +86-21-64324528, Fax: +86-21-64322511.

E-mail address: xibinyu@shnu.edu.cn (X. B. Yu)

Fig. S2. Enlarged version of XRD patterns of BaMoO₄: Pr^{3+} phosphor sintered at 800°C from 26°C to 27°C.

Fig. S3. XRD patterns of as-prepared products sintered in different temperatures.

Fig. S4. The excitation spectra of $Ba_{0.98}MoO_4:0.02Pr^{3+}$, $0.02KCl(\lambda_{em} = 643 \text{ nm})$ and $CaS:Eu^{2+}(\lambda_{em} = 649 \text{ nm})$, the emission spectra of $Ba_{0.98}MoO_4:0.02Pr^{3+}$, 0.02KCl and $CaS:Eu^{2+}(\lambda_{ex} = 450 \text{ nm})$.