Supporting Information

Synthetic procedure

2-methylbenzo[b]thiophene (2)

A 300 ml four necked flask was charged with **1** (13.4 g, 100 mmol) in 100 ml of dry THF and cooled to -78 °C. *n*-BuLi in hexane (66 ml, 105 mmol) was added slowly and the mixture was stirred for 15 min, followed by adding MeI (14.9 g, 105 mmol) at that temperature. The solution was kept at -78 °C for additional 30 min. The resulting mixture was quenched by water and was extracted with ether washed and concentrated to afford 2-methylbenzo[b]thiophene **2** as colorless liquid (14.5 g, 100 mmol, >99 %).

3-iodo-2-methylbenzo[b]thiophene (3)

A 100 ml of four neck flask was charged with $H_2SO_4(1.5 \text{ ml})$, AcOH(50 ml), $H_2O(10 \text{ ml})$, HIO₄ · 2H₂O(2.28 g, 10 mmol), I₂(5.08 g, 20 mmol) and 2-methylbenzo[b]thiophene(7.41 g, 50.0 mmol). Then, reaction mixture was stirred at 65 °C for 5 h. The reaction mixture was Neutralized with 10 M KOH aq., then, under base condition, was treated with Na₂S₂O₃·5H₂O. The resulting solution was extracted

with ether. The organic layer was dried over anhydrous magnesium sulfate, filterd and concentrated. The residue was purified with silica gel column chromatography (hexane) to afford 3-iodo-2-methylbenzo[b]thiophene (, 73%) as pale red liquid. ¹H-NMR (CD₃CN, 300MHz) 8.09-8.05(m, 2H), 7.79-7.74(m, 2H), 7.64-7.57(m, 2H), 7.56-7.50(m, 3H), 7.28-7.20(m, 4H), 2.14(s, 6H) ¹³C-NMR ((CD₃)₂CO, 75 MHz) 168.0, 149.5, 141.3, 140.5, 140.3, 140.2, 138.7(2), 138.6(6), 134.5, 131.3, 130.1, 128.7, 128.3, 127.2, 125.6, 125.2, 125.0, 124.8, 123.8, 123.7, 122.9, 122.8, 122.6, 15.0, 14.9. EI-HRMS(m/z) [M]⁺ calcd. for C27H19NS3, 453.07, found, 453.0685. Anal. Calcd. for C₂₇H₁₉NS₃: C, 71.49; H, 4.22; N, 3.09. Found: C, 71.36; H, 4.13; N, 3.05.

4,4,5,5-tetramethyl-2-(2-methylbenzo[b]thiophen-3-yl)-1,3,2-dioxaborolane (5)

A 300 ml four necked flask was charged with **3** (5.48 g, 20.0 mmol) in 100 ml of dry THF and cooled to -78 °C. *n*-BuLi in hexane (15 ml, 24.0 mmol) was added slowly and the mixture was stirred for 30 min, followed by adding 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4.9 ml, 24 mmol) at that temperature. The solution was kept at -78 °C for additional 30 min. The resulting mixture was quenched by water and was extracted with ether washed and concentrated.

The crude product was purified by recrystallization to afford 4,4,5,5-tetramethyl-2-(2-methylbenzo[b]thiophen-3-yl)-1,3,2-dioxaborolane **5** as colorless crystals (1.7 g, 6.20 mmol, 31 %).

2-(benzo[b]thiophen-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6)

A 100 ml four necked flask was charged with 4 (8.14 g, 38.2 mmol) in 100 ml of dry THF and cooled to -78 °C. n-BuLi in hexane (25 ml, 40.0 mmol) was added slowly and the mixture stirred for 15 min, followed by adding was 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7.7 ml, 40 mmol) at that temperature. The solution was kept at -78 °C for additional 30 min. The resulting mixture was quenched by water and was extracted with ether washed and concentrated. The crude product purified recrystallization afford was by to 4,4,5,5-tetramethyl-2-(2-methylbenzo[b]thiophen-3-yl)-1,3,2-dioxaborolane as colorless crystals (2.1 g, 8.1 mmol, 20%) ¹H-NMR (CDCl₃, 300MHz) 8.38-8.35(m, 1H), 8.07(s, 1H), 7.90-7.87(m, 1H), 7.43-7.30(m, 2H), 1.38(s, 12H).

4,5-bis(2-methylbenzo[b]thiophen-3-yl)-2-phenylthiazole (TA-1)

A 100 ml of four neck flask was charged with **5** (576 mg, 2.1 mmol), **7** (319 mg, 1.0 mmol), PPh₃ (131 mg, 0.5 mmol), Pd(PPh₃)₄ (116 mg, 0.10 mmol) and K₃PO₄ in water / dioxane (2M, 30 ml). Then, reaction mixture was stirred at 110 °C under Ar atmosphere for 9 h. The reaction mixture was extracted with ether purified with silica gel column chromatography (hexane / AcOEt = 20: 1) and further purified with the HPLC with C18 / silica gel-column to afford **TA-1** (160mg, 35 %). ¹H-NMR (CD₃CN, 300MHz) 8.09-8.05(m, 2H), 7.79-7.74(m, 2H), 7.64-7.57(m, 2H), 7.56-7.50(m, 3H), 7.28-7.20(m, 4H), 2.14(s, 6H) ¹³C-NMR ((CD₃)₂CO, 75 MHz) 168.0, 149.5, 141.3, 140.5, 140.3, 140.2, 138.7(2), 138.6(6), 134.5, 131.3, 130.1, 128.7, 128.3, 127.2, 125.6, 125.2, 125.0, 124.8, 123.8, 123.7, 122.9, 122.8, 122.6, 15.0, 14.9. EI-HRMS(m/z) [M]⁺ calcd. for C27H19NS3, 453.07, found, 453.0685. Anal. Calcd. for C₂₇H₁₉NS₃: C, 71.49; H, 4.22; N, 3.09. Found: C, 71.36; H, 4.13; N, 3.05.

4,5-di(benzo[b]thiophen-3-yl)-2-phenylthiazole(TA-2)

A 100 ml of four neck flask was charged with **6** (832 mg, 1.95 mmol), **7** (303 mg, 0.95 mmol), PPh₃ (124 mg, 0.5 mmol), Pd(PPh₃)₄ (225 mg, 0.20 mmol) and K₃PO₄ in water / dioxane (2M, 30 ml). Then, reaction mixture was stirred at 110 °C under Ar atmosphere for 12 h. The reaction mixture was extracted with ether purified with silica gel column

chromatography (hexane / AcOEt = 15: 1) and further purified with the HPLC with C18 / silica gel-column to afford **TA-1** (80 mg, 20 %). ¹H-NMR (CD₃CN, 300MHz) 8.84-8.82(m, 1H), 8.24(s, 1H), 8.13-8.10(m, 1H), 8.00-7.96(m, 1H), 7.89-7.83(m, 2H), 7.65(s, 1H), 7.51-7.43(m, 3H), 7.35-7.26(m, 4H), 7.18-7.12(m, 1H), EI-HRMS (m/z) [M]⁺ calcd. for C25H15NS3, 425.0367, found, 425.0364.

Complete reference for Gaussian calculation

19.(a) Gaussian 03, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;

Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.;

Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;

Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada,

M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda,

Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;

Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;

Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;

Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,

A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;

Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2009

Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox,

D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.;

Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.;

Gaussian, Inc., Wallingford CT, 2004. (b) GaussView, Version 4.1, Dennington II, Roy;

Keith, Todd; and Millam, John;

Semichem, Inc., Shawnee Mission,

KS, 2007.

Figure S1. Observed infrared spectra (a) of open-ring isomer TA-1a (-) and closed-form isomer TA-1b (\cdots) of bulk amorphous state, and DFT calculated spectra (b) of TA-1a(-) and closed-form isomer TA-1b(\cdots).

This journal is © The Royal Society of Chemistry 2009

Figure S2. Photo-induced coloration of (a) TA-1 and of (b)TA-2 in bulk amorphous phase.

X-ray crystallographic analyses of TA-1.

EXPERIMENTAL DETAILS

A. Crystal Data	
Empirical Formula	C ₂₇ H ₁₉ NS ₃
Formula Weight	453.63
Crystal Color, Habit	colorless, block
Crystal Dimensions	0.28 X 0.24 X 0.20 mm
Crystal System	triclinic
Lattice Type	Primitive
Indexing Images	3 oscillations @ 300.0 seconds
Detector Position	127.40 mm
Pixel Size	0.100 mm

This journal is © The Royal Society of Chemistry 2009

Lattice Parameters	a = 10.7209(5) Å	
	b = 10.8452(5) Å	
	c = 11.2030(5) Å	
	$\alpha = 79.6997(14)^{\circ}$	
	$\beta = 74.6185(15)^{0}$	
	$\gamma = 63.0804(11)^{\text{O}}$	
	$V = 1117.21(9) \text{ Å}^3$	
Space Group	P-1 (#2)	
Z value	2	
D _{calc}	1.348 g/cm ³	
F000	472.00	
μ(ΜοΚα)	3.468 cm ⁻¹	
B. Intensity Measurements		
Diffractometer	Rigaku RAXIS-RAPID	
Radiation	MoK α ($\lambda = 0.71075$ Å)	
	graphite monochromated	
Detector Aperture	280 mm x 256 mm	
Data Images	55 exposures	
ω oscillation Range (χ =45.0, ϕ =0.0)	130.0 - 190.0 ⁰	
Exposure Rate	180.0 sec./ ⁰	
ω oscillation Range (χ =45.0, ϕ =180.0)	0.0 - 160.0 ⁰	

Exposure Rate	180.0 sec./0
Detector Position	127.40 mm
Pixel Size	0.100 mm
20 _{max}	54.80
No. of Reflections Measured	Total: 11079
	Unique: 5056 (R _{int} = 0.032)
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: 0.734 - 0.933)

This journal is © The Royal Society of Chemistry 2009

C. Structure Solution and Refinement

Structure Solution		Direct Methods (SIR92)
Refinement		Full-matrix least-squares on F ²
Function Minimized		$\Sigma \le (Fo^2 - Fc^2)^2$
Least	Squares	Weights
)		$1/[0.0006Fo^2+1.0000\sigma(Fo^2)]/(4Fo^2)$
2θ _{max} cutoff		54.8 ⁰
Anomalous Dispersion		All non-hydrogen atoms
No. Observations (I>2.00 σ (I))		3627
No. Variables		299
Reflection/Parameter Ratio		12.13
Residuals: R1 (I>2.00σ(I))		0.0306
Residuals: wR2 (I>2.00 σ (I))		0.0770
Goodness of Fit Indicator		1.005
Max Shift/Error in Final Cycle		0.000
Maximum peak in Final Diff. Map		0.24 e ⁻ /Å ³
Minimum peak in Final Diff. Map		-0.22 e ⁻ /Å ³

This journal is © The Royal Society of Chemistry 2009

Formation of surface relief grating

Experimental condition

<u>Thin film</u>

Concentration of 1 mg / ml chloroform solution containing TA-1 were dropped on the quartz plate, and the plates were spun by 500 rpm for 10 seconds, and then by 5000 rpm for 20seconds.

Light source

500W Super-high-pressure UV Lamp, Optical Modulex SX-UID 501HUVQ (USHIO) + Filter UG 11 (USHIO)

Procedure

The thin film was irradiated with UV light containing 313nm and 365 nm with a mask of 200 lines/mm (Edmund Industrial Optics) glass plate.

<u>AFM</u>

JSTM-4200D (JEOL) with a micro cantilever (OMCL-AC160TS-C2, OLYMPUS)

Fig. S-1. AFM image of the surface of the amorphous film of TA-1 after