This journal is © the Royal Society of Chemistry 2009

Supplementary data

Three-dimensional architectures of spinel-type LiMn₂O₄ prepared from biomimetic porous carbonates and their application to a cathode for lithium-ion batteries

Hiroaki Uchiyama^a, Eiji Hosono^b, Haoshen Zhou^{b*}, Hiroaki Imai^{a*}

(a) Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

(b) Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Japan

Fax: +81 45 566 1551; *Tel:* +81 45 566 1556; *E-mail:* <u>hiroaki@applc.keio.ac.jp</u> (H. Imai). *Fax:* +81 29 861 5799; *Te.:* +81 29 861 5795; *E-mail:* hs.zhou@aist.go.jp (H. Zhou).

SI-1. Additional information about the experimental conditions of electrochemical measurements

The area of working electrodes was ca. 0.25 cm^2 (0.5 cm × 0.5 cm) and the mass of the electrodes was ca. 2.5 mg, which corresponded approximately to 10 mg/cm². The current density was 0.1, 0.2 and 0.5 A/g (1.0, 2.0 and 5.0 mA/cm², respectively). C-rate was ca. 0.68, 1.4 and 3.4 C, respectively (these values were calculated using 148 mAh/g as a theoretical capacity).

SI-2. Specific surface area of the products

	$S_{BET} (m^2/g)$		
C_{ag} (wt%)	MnCO ₃	Mn_2O_3	LiMn ₂ O ₄
0	0.34	17.7	1.98
0.5	0.43	13.9	1.34
4.0	1.40	36.1	2.71

Table S1. Specific surface area of MnCO₃, Mn₂O₃ and LiMn₂O₄.

A highly porous framework of the products prepared at $C_{ag} = 4.0$ provided relatively large surface area in all compounds (MnCO₃, Mn₂O₃ and LiMn₂O₄). On the other hand, S_{BET} of Mn₂O₃ and LiMn₂O₄ prepared at $C_{ag} = 0.5$ was smaller than that at $C_{ag} = 0$ in spite of the presence of an agar gel. The low S_{BET} value of the product at $C_{ag} = 0.5$ could be caused by the size of the secondary particle larger than that of the spherical particles prepared without agar. This journal is © the Royal Society of Chemistry 2009

SI-3. Discussion on Li : Mn molar ratios

Figure S1. XRD patterns of products reacted with Li₂CO₃ at Li :Mn = 0.95 : 2 (a), 1 : 2 (b) and 1.05 : 2 (c) ($C_{ag} = 4.0$ wt%).

Spinel-type LiMn₂O₄ were prepared by calcination of Mn₂O₃ as an intermediate phase with L₂CO₃. The intermediates were mixed and then reacted with Li₂CO₃ at 560°C for 4 h and at 750°C for 20 h. The molar ratio of L₂CO₃ : Mn₂O₃ (Li :Mn) varied in a range between 0.95 : 2 and 1.05 : 2 (The heat treatment process was suggested by Xiang et al.^{*}). Figure S1 shows the XRD patterns of the products. Although Mn₂O₃ was heated with a stoichiometric amount of Li₂CO₃ (Li :Mn = 1.00 : 2), a diffraction peak of Mn₂O₃ was detected. This result could be attributed to a deficiency of lithium due to the partial formation of a nonstoichiometric spinel. The diffraction peak of Mn₂O₃ in the XRD pattern disappeared and single-phase spinel-type LiMn₂O₄ were obtained at Li :Mn = 1.05 : 2 to avoid a residual of Mn₂O₃.

* X. M. He, J. J. Li, Y. Cai, Y. W. Wang, J. R. Ying, C. Y. Jiang, C. R. Wan, *J. Solid State Electrochem.* 2005, **9**, 438.