Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing

Lei Qian,[†] Adham Ahmed,[†] Alison Foster,[‡] Steve P. Rannard,^{†,‡} Andrew I. Cooper,[†] and

Haifei Zhang*^{,†}

[†]Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom, [‡]IOTA NanoSolutions Ltd., MerseyBio, Crown Street, Liverpool, L69 7ZB, United Kingdom. Email: zhanghf@liv.ac.uk

Electronic Supporting Information

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2009

Fig. S1 The random porous structure of SCMC by freezing a 1wt % SCMC aqueous solution in a freezer and then freeze drying.

Supplementary Material (ESI) for Journal of Materials Chemistry

This journal is (c) The Royal Society of Chemistry 2009

Fig. S2 Pore size distribution of emulsion-templated porous SCMC as measured by mercury intrusion porosimetry at different volume percentage of internal phase in the emulsions. (A) 0 v/v %. (B) 20 v/v %. (C) 40 v/v %. (D) 60 v/v %. (E) 75 v/v %.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2009

Fig. S3 The porous surface of silica beads calcined from PVA-HS30 beads.

Supplementary Material (ESI) for Journal of Materials Chemistry

This journal is (c) The Royal Society of Chemistry 2009

Fig. S4 Porous zirconia/PVA composites with tuned pore morphology and porosity, prepared from emulsion-templated PVA beads. (A) 0 v/v %. (B) 20 v/v. (C) 40 v/v %.
(D) 60 v/v. (E) 75 %.