SUPPORTING INFORMATION

Effects of metal substitution in transition-metal phosphides $(Ni_{1-x}M'_x)_2P$ (M' = Cr, Fe, Co) studied by X-ray photoelectron and absorption spectroscopy

Peter E. R. Blanchard, Andrew P. Grosvenor, Ronald G. Cavell and Arthur Mar¹

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Table S1. Cell parameters for $(Ni_{1-x}M'_x)_2P$ (M' = Cr, Fe, Co) samples

Table S2. P 2p_{3/2} BEs (eV) for separate $(Ni_{1-x}M'_x)_2P$ (M' = Cr, Fe, Co) samples, or same sample measured at different times

Table S3. Metal $2p_{3/2}$ BEs (eV) for separate $(Ni_{1-x}M'_x)_2P$ (M' = Cr, Fe, Co) samples, or same sample measured at different times

Figure S1. Powder X-ray diffraction patterns for (a) $(Ni_{0.8}M'_{0.2})_2P$ (M' = Cr, Fe, Co) and (b) $(Ni_{1-x}Cr_x)_2P$ (x = 0, 0.5, 0.7, 1).

Figure S2. P 2p XPS spectra for (a) $(Ni_{1-x}Co_x)_2P$, (b) $(Ni_{1-x}Fe_x)_2P$, and (c) $(Ni_{1-x}Cr_x)_2P$.

Figure S3. P K-edge XANES spectra for (a) $(Ni_{1-x}Co_x)_2P$, (b) $(Ni_{1-x}Fe_x)_2P$, and (c) $(Ni_{1-x}Cr_x)_2P$

Figure S4. Metal $2p_{3/2}$ XPS spectra for (a) $(Ni_{1-x}Co_x)_2P$, (b) $(Ni_{1-x}Fe_x)_2P$, and (c) $(Ni_{1-x}Cr_x)_2P$

Figure S5. Normalized TEY (a) Ni, (b) Co, (c) Fe, and (d) Cr L-edge XANES spectra for $(Ni_{1-} _{x}M'_{x})_{2}P$ (M' = Cr, Fe, Co)

¹ Corresponding author. Fax: +1-780-492-8231.

E-mail address: arthur.mar@ualberta.ca (A. Mar).

Sample	Structure type ^{<i>a</i>}	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(\text{\AA}^3)$
Cr ₂ P	Cr ₂ P-type	6.648(2)	10.458(2)	6.371(1)	443.0(1)
Fe ₂ P	Fe ₂ P-type	5.894(1)		3.478(3)	104.64(8)
Co ₂ P	Co ₂ P-type	5.674(1)	3.5290(9)	6.6387(8)	132.93(3)
Ni ₂ P	Fe ₂ P-type	5.893(4)		3.402(6)	102.3(2)
$(Ni_{0.8}Cr_{0.2})_2P$	Fe ₂ P-type	5.886(3)		3.396(5)	101.9(2)
$(Ni_{0.5}Cr_{0.5})_2P$	Co ₂ P-type	5.854(2)	3.555(1)	6.874(3)	142.8(1)
(Ni _{0.3} Cr _{0.7}) ₂ P	Co ₂ P-type	5.878(2)	3.570(1)	6.912(2)	145.07(5)
$(Ni_{0.8}Fe_{0.2})_2P$	Fe ₂ P-type	5.896(1)		3.367(3)	101.36(7)
$(Ni_{0.5}Fe_{0.5})_2P$	Fe ₂ P-type	5.878(2)		3.451(3)	103.26(7)
$(Ni_{0.2}Fe_{0.8})_2P$	Fe ₂ P-type	5.881(2)		3.479(5)	104.2(1)
(Ni _{0.8} Co _{0.2}) ₂ P	Fe ₂ P-type	5.886(2)		3.401(3)	102.0(3)
$(Ni_{0.5}Co_{0.5})_2P$	Fe ₂ P-type	5.851(6)		3.394(4)	100.6(4)
(Ni _{0.2} Co _{0.8}) ₂ P	Co ₂ P-type	5.701(3)	3.5076(2)	6.6363(6)	132.72(6)

Table S1. Cell parameters for $(Ni_{1-x}M'_x)_2P$ (M' = Cr, Fe, Co) samples

^{*a*} Cr₂P-type, space group *Imm*₂; Fe₂P-type, space group $P\overline{6}2m$; Co₂P-type, space group *Pnma*.

Table S2. P 2p_{3/2} BEs (eV) for separate $(Ni_{1-x}M'_x)_2P$ (M' = Cr, Fe, Co) samples, or same sample

Sample	Run 1	Run 2	Run 3
(Ni _{0.8} Co _{0.2}) ₂ P	129.45	129.47	
$(Ni_{0.5}Co_{0.5})_2P$	129.44	129.42	129.39 ^{<i>a</i>}
$(Ni_{0.2}Co_{0.8})_2P$	129.41	129.39	129.42 ^{<i>a</i>}
$(Ni_{0.8}Fe_{0.2})_2P$	129.43	129.39	129.42 ^{<i>a</i>}
$(Ni_{0.5}Fe_{0.5})_2P$	129.39	129.49	129.43 ^{<i>a</i>}
$(Ni_{0.2}Fe_{0.8})_2P$	129.42	129.33	129.32 ^{<i>a</i>}
(Ni _{0.8} Cr _{0.2}) ₂ P	129.44	129.37	
(Ni _{0.5} Cr _{0.5}) ₂ P	129.37	129.32	
(Ni _{0.3} Cr _{0.7}) ₂ P	129.23	129.26	

measured at different times

.

^{*a*} Obtained before Ar⁺-ion sputter-cleaning.

Table S3. Metal $2p_{3/2}$ BEs (eV) for separate $(Ni_{1-x}M'_x)_2P$ (M' = Cr, Fe, Co) samples, or same

Sample	Ni 2p _{3/2}			<i>M</i> ' 2p _{3/2}		
	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
(Ni _{0.8} Co _{0.2}) ₂ P	852.93	853.02		778.10	778.14	
(Ni _{0.5} Co _{0.5}) ₂ P	852.91	852.88	852.94 ^{<i>a</i>}	778.14	778.17	778.11 ^{<i>a</i>}
(Ni _{0.2} Co _{0.8}) ₂ P	852.96	853.03	853.05 ^{<i>a</i>}	778.23	778.30	778.28 ^{<i>a</i>}
(Ni _{0.8} Fe _{0.2}) ₂ P	852.91	852.86	852.85 ^{<i>a</i>}	706.62	706.64	706.71 ^{<i>a</i>}
$(Ni_{0.5}Fe_{0.5})_2P$	853.05	853.01	852.98 ^{<i>a</i>}	706.86	706.83	706.92 ^{<i>a</i>}
(Ni _{0.2} Fe _{0.8}) ₂ P	853.09	853.04	853.08 ^{<i>a</i>}	706.74	706.84	706.81 ^{<i>a</i>}
(Ni _{0.8} Cr _{0.2}) ₂ P	852.92	852.96		573.98	574.09	
(Ni _{0.5} Cr _{0.5}) ₂ P	853.11	853.16		574.01	574.09	
(Ni _{0.3} Cr _{0.7}) ₂ P	853.20	853.12		574.08	573.99	

sample measured at different times

^{*a*} Obtained before Ar⁺-ion sputter-cleaning.

Figure S4a

Figure S4b

Figure S4c

