Supporting Information

Super oil-repellent surfaces from conductive polymers

Thierry Darmanin^a and Frederic Guittard*^a

^a Université de Nice Sophia-Antipolis, Laboratoire de Chimie des Matériaux Organiques et Métalliques, EA 3155, Equipe Chimie Organique aux Interfaces, Parc Valrose, 06108 Nice Cedex 2, France Fax: (+33)4-92-07-61-56; Tel: (+33)4-92-07-61-59

(*) E-mail:Frederic.GUITTARD@unice.fr

This journal is (c) The Royal Society of Chemistry 2009

Synthesis of the monomers

2-(2,3-dihydro-[1,4]dioxino[2,3-c]pyrrol-6-yl)ethoxytert-butyldimethylsilane (1).

EDOP was synthesized from iminodiacetic acid in an eight steps process developed by Merz et al¹. Dry sodium hydrid (0.25 g, 10 mmol) was carefully added to a solution of EDOP (1 g, 8 mmol) in anhydrous THF at 0°C. After stirring for 1 hr at 0°C, 2-*tert*-butyldimethylsilyloxyethyl tosylate (3.2 g, 10 mmol) was added and the reaction mixture was refluxed for 12 hr. After cooling at room temperature and solvent evaporation, aqueous NH₄Cl was carefully added and the solution was extracted with diethyl ether and dried (MgSO₄). Removal of solvent and purification by column chromatography (silica gel; eluent: hexane) gave (1) (Retention time: 14.7 mn); Yield 73 %.

2-(2,3-dihydro-[1,4]dioxino[2,3-*c*]pyrrol-6-yl)ethanol (2).

Tetrabutylammonium fluorid (1M in THF) was added to a solution of (1) in THF. After stirring during 3 hr at 50°C and solvent evaporation, the purification by column chromatography (silica gel; eluent = ethyl acetate) afforded (2) (Retention time: 10.5 mn) as a colourless liquid.

Yield 65 %; $\delta_{\rm H}(250 \text{ MHz}, \text{CDCl}_3)$ 1.79 (1 H, s), 3.79 (4 H, m), 4.17 (4 H, s) and 6.12 (2 H, s); $\delta_{\rm C}(50 \text{ MHz}, \text{CDCl}_3)$ 52.53, 62.77, 65.74, 101.35 and 132.24; m/z 169 (M⁺, 100%), 138 (C₇H₈NO₂⁺, 74); Found: C, 56.85; H, 6.58; N, 8.17. C₈H₁₁NO₃ requires C, 56.80; H, 6.55; N, 8.28%;

2-(2,3-dihydro-[1,4]dioxino[2,3-*c*]pyrrol-6-yl)ethyl 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanoate (3).

DMAP (30 mg) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) (0.3 mg, 1.5 mmol) were added to a solution of 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecanoic acid (0.72 g, 1.5 mmol) in dichloromethane. After stirring during 30 mn at room temperature, (2) (0.25 g, 1.5 mmol) was added. After a day, the solvent was removed and the crude was purified by column chromatography (silica gel; eluent: dichloromethane) to yield (3) (Retention time = 16.6 mn) as a white solid.

Yield 75 %; m.p. 71-72 °C; $\delta_{\rm H}(250 \text{ MHz, CDCl}_3)$ 2.44 (2 H, tt, $J_{\rm HH}$ 7.1, $J_{\rm HF}$ 18.4), 2.63 (2 H, t, ${}^{3}J_{\rm HH}$ 7.1), 3.92 (2 H, t, $J_{\rm HH}$ 5.4), 4.17 (4 H, s), 4.29 (2 H, t, $J_{\rm HH}$ 5.4) and 6.07 (2 H, s); $\delta_{\rm C}(50 \text{ MHz, CDCl}_3)$ 25.37 (t, $J_{\rm CF}$ 3.7), 26.40 (t, $J_{\rm CF}$ 21.9), 48.67, 64.63, 65.76, 101.37, 132.46 and 170.76; $\delta_{\rm F}(188 \text{ MHz, CDCl}_3)$ -126.54 (2 F, m), -123.97 (2 F, m), -123.15 (2 F, m), -122.32 (6 F, m), -115.15 (2 F, m) and -81.16 (3 F, m); $v_{\rm max}({\rm film})/{\rm cm}^{-1}$ 2922, 2864, 1740, 1556, 1200 and 1148; m/z 643 (M⁺, 22), 151 (C₈H₉NO₂⁺, 100), 138 (C₇H₈NO₂⁺, 93); Found: C, 35.58; H, 2.21; N, 2.15. C₁₉H₁₄F₁₇NO₄ requires C, 35.47; H, 2.19; N, 2.18%.

This journal is (c) The Royal Society of Chemistry 2009

Mass spectrum of (2)

Supplementary Material (ESI) for Journal of Materials Chemistry

This journal is (c) The Royal Society of Chemistry 2009

Mass spectrum of (3)

Reference	Oil	γ _L (mN/m)	Contact angle
[19-20]	rapeseed oil	35	150
	hexadecane	27.5	135.5
[21]	salad oil	not available in the pub	130
[22]	oil used : not identified	not available in the pub	150.0
[23]	hexadecane	27.5	140
[24]	hexadecane	27.5	150.7
[25]	hexadecane	27.5	140
[26]	rapeseed oil	35	161
[27]	octane	21.6	163
[28]	oil used : not identified	not available in the pub	140
[29]	salad oil	not available in the pub	142.8
[30]	diiodomethane (not oil)	50	152
[31]	hexadecane	27.5	135
[55]	hexadecane	27.5	135
present work	hexadecane	27.5	147

Contact angles with oils of superoleophobic surfaces reported in the literature.

SEM images of poly(3) electrodeposited on gold from an acetonitrile solution containing $Bu_4N^+ClO_4^-$; the scale bar represents 1 μ m.

SEM images of poly(3) surface obtained with Bu₄N⁺CH₃PhSO₃⁻ salt: same surface, two different magnifications. Circles indicate small fractures of the surface.

AFM images of poly(**3**) electrodeposited with various deposition charges Qs (mC.cm⁻²): (a) 0; (b) 10; (c) 25; (d) 50 et (e) 100.

SEM images of the polymer surface for $Qs = 10 \text{ mC.cm}^{-2}$; the scale bar represents (a) 1 μ m, (b) 100 nm.