Supporting Information for

Enhanced photovoltaic performance by synergism of light-cultivation and electronic localization for highly efficient dye-sensitized solar cells

Jen-Fu Yin,^{*a*} Dibyendu Bhattacharya,^{*b*} Ying-Chan Hsu,^{*b*} Chen-Chuan Tsai,^{*b*} Kuang-Lieh Lu,*^{*b*} Hong-Cheu Lin,*^{*a*} Jian-Ging Chen^{*c*} and Kuo-Chuan Ho^{*c*}

 ^a Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
^b Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan. Fax: 886-2-27831237; Tel: 886-2-27898518; E-mail: lu@chem.sinica.edu.tw

^c Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan

1. Experimental section

(1) Synthesis of ligands opip and otip

The synthetic procedure of opip and otip are showed in Scheme S1.

Scheme S1. Synthesis of ligands opip and otip.

(2) Synthesis of ruthenium sensitizers JF-1 and JF-2

The one-pot synthetic procedure developed for heteroleptic polypyridyl ruthenium complexes was employed for the preparation of new sensitizers **JF-1** and **JF-2**. The synthetic procedure of **JF-1** and **JF-2** were showed in Scheme S2.

Scheme S2. Synthesis of ruthenium sensitizers JF-1 and JF-2.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2009

Fig. S1 ¹H-NMR spectrum (aromatic region) of **N3**, **JF-1** and **JF-2** in d₆-DMSO.

2. The spectra mismatch factor (M)

The deviation in power-conversion efficiency can be calculated from the spectra mismatch factor (M) using equation 1,

$$\mathbf{M} = \frac{\int_{\lambda_1}^{\lambda_2} \mathbf{E}_{\mathrm{R}}(\lambda) \mathbf{S}_{\mathrm{R}}(\lambda) d\lambda}{\int_{\lambda_1}^{\lambda_2} \mathbf{E}_{\mathrm{R}}(\lambda) \mathbf{S}_{\mathrm{T}}(\lambda) d\lambda} \frac{\int_{\lambda_1}^{\lambda_2} \mathbf{E}_{\mathrm{S}}(\lambda) \mathbf{S}_{\mathrm{T}}(\lambda) d\lambda}{\int_{\lambda_1}^{\lambda_2} \mathbf{E}_{\mathrm{S}}(\lambda) \mathbf{S}_{\mathrm{R}}(\lambda) d\lambda}$$
(1)

where $E_R(\lambda)$ is the reference spectral irradiance, $E_S(\lambda)$, the source spectral irradiance, $S_R(\lambda)$, the spectral responsivity of the reference cell, and $S_T(\lambda)$, the spectral responsivity of the cell that was fabricated by us. In this instance, we used a Si reference solar cell (Oriel 91150, calibrated by the National Renewable Energy Laboratory (NREL) as the reference cell.

3. The UV-vis absorption and emission spectra of opip and otip

Fig. S2 UV-vis absorption and emission spectra of the free ligands, opip and otip, in DMF.

4. Computational selected bond lengths $[{\rm \AA}]$ and angles (deg) of complexes

JF-1 and JF-2

Fig. S3 Structural schematic diagrams of JF-1 and JF-2 for atom numbering.

Table S1 Selected bond distances [Å] and angles [deg] of complexes **JF-1** and **JF-2** in calculated singlet ground-state geometry using the DFT at the B3LYP/LanL2DZ level.

Compound	Ru–N1	Ru–N2	Ru–N3	Ru–N4	Ru–N5	Ru–N6	N1-Ru-N4	N2-Ru-N5
JF-1	2.02	2.01	2.03	2.04	2.05	2.05	177.97	173.13
JF-2	2.04	2.05	2.07	2.07	2.06	2.05	177.30	172.18

Fig. S4 Energy and character of the frontier MOs of **JF-1** and **JF-2**. Also shown are isodensity plots of selected MOs. For better clarity on the major components in the MOs, we set isovalue = 0.04 for these plots.