Electronic Supplementary Information for

Anion-Driven Mesogenicity: Ionic Liquid Crystals based

on the [closo-1-CB₉H₁₀]⁻ Cluster

Bryan Ringstrand,^{*a*} Hirosato Monobe,^{*b*} and Piotr Kaszynski^{*a}

^a Organic Materials Research Group, Department of Chemistry, Vanderbilt University, Nashville,

TN 37235, USA.

^b Nanotechnology Research Institute, National Institute of Advanced Industrial Science and

Technology, AIST Kansai Centre, Midorigaoka 1-8-31, Ikeda, Osaka, 536-8577, Japan.

Table of Content:

S5
S6
S22
S23
S27

1. Powder XRD Data

Table S1. X-ray Diffraction Data.

Sample	temp	phase	20	d (exp	p) d (calcd)	hkl	
	/°C		/0	/Å			
1d[Pyr]	180	SmA	3.22	27.4	26.6	001	c = 26.6 Å
			6.64	13.3	13.3	002	
			10.16	8.7	8.8	003	
			16.5	5.5	halo		
			19.8	4.5	halo		
	140	Х	3.09	28.6	27.6	001	<i>c</i> = 27.6 Å
			6.40	13.8	13.8	002	
			7.74	11.4			
			9.74	9.1	9.2	003	
			10.78	8.2			
			12.10	7.3			
			13.07	6.8	6.9	004	
			14.31	6.2			
			16.43	5.4	5.5	005	
			17.44	5.1			
			18.03	4.92			
			19.53	4.54			
			19.81	4.48			
2d[Pvr]	140	SmA	3.29	26.8	26.0	001	c = 26.0 Å
[_] _]	-		6.78	13.0	13.0	002	
			10.29	8.6	8.7	003	
			13.82	6.4	6.5	004	
			16.0	5.5		halo	
			19.9	4.5		halo	
			17.7	1.5		nuio	
lf[Pyr]	175	SmA	3.32	26.6	25.8	001	c = 25.8 Å
			6.85	12.9	12.9	002	
			10.42	8.5	8.6	003	
	16.3-17.1 5.4-5.2				.2	halo	
	155	Xouth	3.38	26.1	25.7	001	a = 9.0 Å, $b = 5.2$ Å, $c = 25.7$ Å
	100	- - 0101	6.87	12.9	12.9	002	
			9.83	9.0	9.0	100	
			10.39	8.5	8.6	003.10	01
			13.94	6.4	6.4	004	-
			10.00		2		

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

		16.98 17.23 19.70 20.00	5.2 5.1 4.50 4.44	5.2 5.1 4.5 4.4	010 005, 011 110 111
130	X'	3.36 6.83 7.75 9.77	26.3 12.9 11.4 9.1	25.6 12.8	001 $c = 25.6 \text{ Å}$ 002
		10.31 10.93 12.10	8.6 8.1 7.3	8.6	003
		13.80 14.17 14.80	6.4 6.2 6.0	6.4	004
		17.35 18.02 19.57 19.89	5.1 4.9 4.53 4.46	5.2	010, 005

c is calculated from d_{002} .

Figure S1. Stacked X-ray diffraction patterns for **2d[Pyr]** at 140 °C (SmA) and at 100 °C (crystal phase).

Figure S2. Full scale X-ray diffraction pattern for 2d[Pyr] at 100 °C (crystal phase).

Figure S3. Stacked X-ray diffraction patterns for **1f[Pyr]** at ambient temperature before heating (crystalline phase) and at 130 °C (phase X).

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is The Royal Society of Chemistry 2009

2. Optical textures for selected compounds

Figure S4. Optical textures of an unidentified phase X of **1b[Pyr]** obtained at 106 °C. Magnification ×40.

Figure S5. Optical textures of **1c[Pyr]** obtained for the same region of the sample upon cooling at (a) SmA at 164 $^{\circ}$ C (b) unidentified phase X at 91 $^{\circ}$ C. Magnification ×50.

a) b) c) Figure S6. Optical textures of **1e[Pyr]** obtained for the same region of the sample upon cooling at (a) SmA at 157 °C (b) Phase E at 145 °C (c) Phase X at 120 °C. Magnification ×40.

a) b) c) Figure S7. Optical textures of **1f[Pyr]** obtained for the same region of the sample upon cooling at (a) SmA at 180 °C (b) Phase E growing from SmA at 167 °C (c) Phase E at 151 °C. Magnification \times 50.

Figure S8. Optical textures of 2a[Pyr] obtained for the same region of the sample upon cooling at (a) SmA at 110 °C (b) Phase X at 88 °C. Magnification ×40.

3. Synthetic Details

¹H NMR spectra were obtained at 400 MHz field for all compounds, excluding **7**, **1d**[**NMe**₄], **1e**[**Pyr**], and **2c**[**Pyr**] which were recorded at 300 MHz field, in acetone- d_6 (δ 2.04 ppm), CD₃CN (δ 1.93 ppm) or CDCl₃ (δ 7.26 ppm). ¹¹B NMR were recorded at 128 MHz field. Chemical shifts were referenced to the solvent (¹H) or to an external sample of B(OH)₃ in MeOH (¹¹B, δ = 18.1 ppm). IR spectra were recorded for microcrystalline samples using the ATR technique. Elemental analysis was provided by Atlantic Microlabs.

General Procedure for Preparation of 1[Pyr] and 2[Pyr].

N-Butyl-4-heptyloxypyridinium bromide (7, 1.0 equivalent) was added to a solution of ester $1[NMe_4]$ or diazene $2[NMe_4]$ or $2[NHEt_3]$ in CH₂Cl₂ and a precipitate formed. Water was added, and the biphasic system was stirred vigorously until all the precipitate had dissolved. The

 CH_2Cl_2 layer was separated, and the aqueous layer was extracted with additional CH_2Cl_2 . The CH_2Cl_2 layers were combined, dried (Na₂SO₄), and evaporated giving a white (**1[Pyr]**) or yellow (**2[Pyr]**) crystalline solid, which was recrystallized repeatedly from aqueous alcohol. The resulting crystals were dried in vacuum at ambient temperature.

1a[Pyr]: Recrystallized from EtOH/H₂O mixtures (3x) providing 0.017 g (61% yield for cation exchange) of the pure salt as a white powder: ¹H NMR (CDCl₃) δ 0.40-2.50 (m, 8H, B-H), 0.86-0.96 (m, 12H), 1.23-1.50 (m, 26H), 1.53-1.60 (m, 2H), 1.75-1.87 (m, 6H), 1.87-1.95 (m, 2H), 1.97-2.04 (m, 2H) 3.96 (t, *J* = 6.5 Hz, 2H), 4.20 (t, *J* = 6.5 Hz, 2H), 4.26 (t, *J* = 7.5 Hz, 2H), 6.92 (d, *J* = 8.9 Hz, 2H), 7.18 (d, *J* = 8.9 Hz, 2H), 7.25 (d, *J* = 7.2 Hz, 2H), 8.30 (d, *J* = 7.2 Hz, 2H); ¹¹B NMR (acetone-*d*₆) δ -24.0 (d, *J* = 139 Hz, 4B), -16.1 (d, *J* = 150 Hz, 4B), 48.2 (s, 1B). Anal. Calcd. for C₃₉H₇₂B₉NO₄: C, 64.14; H, 9.66; N, 1.92. Found: C, 64.37; H, 9.78; N, 1.97.

1b[Pyr]: Recrystallized from cold EtOH (3x) providing 0.027 g (24% overall yield based on acid **3[NMe₄]**) of the pure salt as a white powder: ¹H NMR (acetone- d_6) δ 0.40-2.50 (m, 8H, B-H), 0.83-0.93 (m, 9H), 0.94 (t, J = 7.3 Hz, 3H), 1.25-1.50 (m, 24H), 1.56 (quintet, J = 7.0 Hz, 2H), 1.73 (quintet, J = 7.4 Hz, 2H), 1.83-1.98 (m, 6H), 2.02-2.08 (m, 2H), 2.59 (t, J = 7.4 Hz, 2H), 4.45 (t, J = 6.5 Hz, 2H), 4.61 (t, J = 7.4 Hz, 2H), 7.20 (d, J = 8.9 Hz, 2H), 7.31 (d, J = 8.9 Hz, 2H), 7.65 (d, J = 7.3 Hz, 2H), 8.89 (d, J = 7.4 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -23.9 (d, J = 136 Hz, 4B), -16.0 (d, J = 148 Hz, 4B), 48.0 (s, 1B). Anal. Calcd. for C₃₉H₇₀B₉NO₅: C, 65.39; H, 10.13; N, 1.96. Found: C, 65.19; H, 10.20; N, 2.00.

1c[Pyr]: Recrystallized from EtOH/H₂O mixtures (3x) providing 0.020 g (17% overall yield based on acid **3[NMe₄]**) of the pure salt as a white powder: ¹H NMR (acetone- d_6) δ 0.40-2.50 (m, 8H, B-H), 0.84-0.92 (m, 9H), 0.95 (t, J = 7.3 Hz, 3H), 0.98-1.10 (m, 2H), 1.20-1.44 (m, 21H), 1.45-1.60 (m, 6H), 1.83-1.97 (m, 8H), 2.01-2.08 (m, 2H), 2.10-2.20 (m, 2H), 2.52 (tt, $J_1 = 12.2$ Hz, $J_2 = 3.5$ Hz, 1H), 4.46 (t, J = 6.5 Hz, 2H), 4.63 (t, J = 7.4 Hz, 2H), 7.18 (d, J = 8.9 Hz, 2H), 7.31 (d, J = 8.9 Hz, 2H), 7.66 (d, J = 7.5 Hz, 2H), 8.90 (d, J = 7.5 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -23.9 (d, J = 142 Hz, 4B), -16.0 (d, J = 147 Hz, 4B), 48.0 (s, 1B). Anal. Calcd. for C₄₂H₇₄B₉NO₅: C, 65.48; H, 9.68; N, 1.82. Found: C, 65.47; H, 9.70; N, 1.84.

1d[**Pyr**]: Recrystallized from EtOH/H₂O mixtures (3x) providing 0.041 g (20% overall yield based on acid **3**[**NMe₄**]) of the pure salt as white crystals: ¹H NMR (acetone- d_6) δ 0.40-3.50 (m, 18H, B-H), 0.83 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 7.3 Hz, 3H), 0.91 (t, J = 7.6 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H), 1.10-1.43 (m, 18H), 1.45-1.52 (m, 2H), 1.53-1.60 (m, 2H), 1.67-1.75 (m, 2H), 1.83-1.97 (m, 6H), 1.98-2.07 (m, 2H), 4.47 (t, J = 6.5 Hz, 2H), 4.64 (t, J = 7.5 Hz, 2H), 7.15 (d, J = 9.0 Hz, 2H), 7.33 (d, J = 9.0 Hz, 2H), 7.68 (d, J = 7.0 Hz, 2H), 8.92 (d, J = 6.7 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -23.9 (d, J = 132 Hz, 4B), -15.9 (d, J = 151 Hz, 4B), -13.2 (d, J = 161 Hz, 5B), -12.6 (d, J = 154 Hz, 5B), 48.3 (s, 1B). Anal. Calcd. for C₃₈H₇₄B₁₉NO₅: C, 54.96; H, 8.98; N, 1.69. Found: C, 55.17; H, 8.99; N, 1.63.

1e[Pyr]: Recrystallized from EtOH/H₂O mixtures (3x) giving 10 mg (20% overall yield based on acid **3[NMe₄]**) of the pure salt as white crystals: ¹H NMR (300 MHz, acetone- d_6) δ 0.40-2.50 (m, 8H, B-H), 0.84-0.94 (m, 9H), 0.95 (t, J = 7.4 Hz, 3H), 1.01-1.20 (m, 2H), 1.21-1.61 (m, 31H), 1.78-2.10 (m, 8H), 2.53 (bt, J = 12.2 Hz, 1H), 4.46 (d, J = 6.5 Hz, 2H), 4.64 (t, J = 7.4

Hz, 2H), 7.17 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 7.5 Hz, 2H), 8.92 (d, J = 7.5 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -23.9 (d, J = 131 Hz, 4B), -16.1 (d, J = 155 Hz, 4B), 48.0 (s, 1B); UV (MeCN), λ_{max} 243 nm, (log $\varepsilon = 4.32$), (CH₂ClCH₂Cl), λ_{max} 248 nm, (log $\varepsilon = 4.30$). Anal. Calcd. for C₄₁H₇₄B₉NO₃: C, 67.80; H, 10.27; N, 1.93. Found: C, 68.04; H, 10.33; N, 1.92.

If[**Pyr**]: Recrystallized from EtOH/H₂O mixtures (3x) providing 0.030 g (19% overall yield based on acid **3**[**NMe₄**]) of the pure salt as white crystals: ¹H NMR (acetone-*d*₆) δ 0.40-3.50 (m, 18H, B-H), 0.84 (t, J = 7.2 Hz, 3H), 0.86 (t, J = 7.0 Hz, 3H), 0.91 (t, J = 7.1 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H), 1.10-1.60 (m, 22H), 1.68-1.76 (m, 2H), 1.82-1.95 (m, 6H), 1.98-2.09 (m, 2H), 4.46 (t, J = 6.5 Hz, 2H), 4.64 (d, J = 7.4 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.34 (d, J = 8.8 Hz, 2H), 7.67 (d, J = 6.2 Hz, 2H), 8.92 (d, J = 5.9 Hz, 2H); ¹¹B NMR (acetone-*d*₆) δ -23.8 (d, J = 148 Hz, 4B), -15.9 (d, J = 153 Hz, 4B), -12.3 (d, J = 157 Hz, 10B) 47.9 (s, 1B). Anal. Calcd. for C₃₇H₇₄B₁₉NO₃: C, 56.51; H, 9.48; N, 1.78. Found: C, 56.55; H, 9.51; N, 1.75.

2a[Pyr] as a yellow crystalline solid, which was recrystallized from MeOH (3x) followed by EtOH (3x) giving 0.024 g (32% overall yield based on phenol **5[NMe₄]**) of pure **2a[Pyr]** as yellow leaflets: ¹H NMR (acetone- d_6) δ 0.40-2.50 (m, 8H, B-H), 0.84-0.89 (m, 6H), 0.90 (t, J = 7.1 Hz, 3H), 0.95 (t, J = 7.3 Hz, 3H), 1.20-1.62 (m, 28H), 1.77-2.08 (m, 10H), 4.10 (t, J = 6.5 Hz, 2H), 4.46 (t, J = 6.5 Hz, 2H), 4.63 (t, J = 7.5 Hz, 2H), 7.07 (d, J = 8.9 Hz, 2H), 7.67 (d, J = 7.4 Hz, 2H), 7.84 (d, J = 8.8 Hz, 2H), 8.90 (d, J = 7.4 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -24.5 (d, J = 140 Hz, 4B), -17.1 (d, J = 157 Hz, 4B), 42.5 (s, 1B). Anal. Calcd. for C₃₈H₇₂B₉N₃O₂: C, 65.17; H, 10.36; N, 6.00. Found: C, 65.45; H, 10.62; N, 6.03.

2b[Pyr]: Recrystallized from MeOH (3x) followed by EtOH (2x) giving 0.052 g (72% overall yield based on phenol **5[NMe₄]**) of the pure salt as yellow leaflets: ¹H NMR (acetone- d_6) δ 0.40-2.50 (m, 8H, B-H), 0.83-0.91 (m, 6H), 0.92 (t, J = 7.1 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H), 1.25-1.51 (m, 24H), 1.58 (quintet, J = 7.1 Hz, 2H), 1.75 (quintet, J = 7.4 Hz, 2H), 1.84-1.94 (m, 6H), 1.96-2.08 (m, 2H), 2.63 (t, J = 7.4 Hz, 2H), 4.45 (t, J = 6.5 Hz, 2H), 4.62 (t, J = 7.4 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 7.4 Hz, 2H), 7.91 (d, J = 8.8 Hz, 2H), 8.90 (d, J = 7.4 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -24.4 (d, J = 136 Hz, 4B), -16.9 (d, J = 149 Hz, 4B), 44.0 (s, 1B). Anal. Calcd. for C₃₈H₇₀B₉N₃O₃: C, 63.90; H, 9.88; N, 5.88. Found: C, 64.12; H, 10.03; N, 5.94.

2c[Pyr]: Recrystallized from MeOH (3x) followed by EtOH (2x) giving 0.043 g (38% overall yield based on phenol **5[NMe₄]**) of the pure diazene as yellow leaflets: ¹H NMR (300 MHz, acetone- d_6) δ 0.40-2.50 (m, 8H, B-H), 0.83-0.93 (m, 9H), 0.94 (t, J = 7.4 Hz, 3H), 0.98-1.13 (m, 2H), 1.20-1.64 (m, 27H), 1.80-2.01 (m, 10H), 2.10-2.22 (m, 2H), 2.55 (tt, $J_1 = 12.2$ Hz, $J_2 = 3.6$ Hz, 1H), 4.45 (t, J = 6.5 Hz, 2H), 4.62 (t, J = 7.4 Hz, 2H), 7.28 (d, J = 8.8 Hz, 2H), 7.66 (d, J = 7.5 Hz, 2H), 7.91 (d, J = 8.8 Hz, 2H), 8.90 (d, J = 7.5 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -24.4 (d, J = 134 Hz, 4B), -16.9 (d, J = 153 Hz, 4B), 43.6 (s, 1B). Anal. Calcd. for C₄₁H₇₄B₉N₃O₃: C, 65.28; H, 9.89; N, 5.57. Found: C, 65.39; H, 9.99; N, 5.57.

2d[Pyr]: Recrystallized from MeOH (3x) followed by EtOH (2x) giving 0.073 g (71% overall yield based on phenol **5[NMe₄]**) of pure diazene as yellow needles: ¹H NMR (acetone- d_6) δ 0.40-3.50 (m, 18H, B-H), 0.83 (t, J = 7.3 Hz, 3H), 0.85-0.92 (m, 6H), 0.94 (t, J = 7.3 Hz, 3H), 1.08-1.44 (m, 18H), 1.45-1.52 (m, 2H), 1.57 (quintet, J = 7.0 Hz, 2H), 1.67-1.76 (m, 2H), 1.84-

1.93 (m, 6H), 1.95-2.08 (m, 2H), 4.45 (t, J = 6.5 Hz, 2H), 4.62 (t, J = 7.4 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H), 7.66 (d, J = 7.3 Hz, 2H), 7.91 (d, J = 8.8 Hz, 2H), 8.90 (d, J = 7.3 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -24.3 (d, J = 132 Hz, 4B), -16.7 (d, J = 141 Hz, 4B), -13.2 (d, J = 153 Hz, 5B), -12.6 (d, J = 157 Hz, 5B), 44.0 (s, 1B); UV (MeCN) λ_{max} (log ε), 247 nm (4.41), 305 nm (4.20), 410 nm (2.7). Anal. Calcd. for C₃₇H₇₄B₁₉N₃O₃: C, 54.57; H, 9.16; N, 5.16. Found: C, 54.85; H, 9.25; N, 5.16.

General Procedure for Preparation of Esters 1a[NMe₄]–1f[NMe₄]

Phenol **4** (1.5 equivalents) was added to a colorless solution of [*closo*-1-CB₉H₈-1-COOH-10-C₆H₁₃][•]NMe₄⁺ (**3**[NMe₄], 1.0 equivalent), DCC (1.0 equivalent), and DMAP (0.1 equivalents) in anhydrous CH₂Cl₂. The mixture was stirred overnight at rt, and the reaction progress was monitored by TLC ($R_f = 0.5$, CH₃CN/CH₂Cl₂, 1:9). The solvent was removed *in vacuo*, and the crude product was isolated by column chromatography (SiO₂, CH₃CN/CH₂Cl₂, 1:9). The resulting ester was washed with hot hexane and recrystallized from EtOH/H₂O or MeOH/H₂O. Esters **1a**[NMe₄] and **1b**[NMe₄] were difficult to crystallize and were converted directly to *N*-butyl-4-heptyloxypyridinium salts (**1**[**Pyr**]) without further purification.

1a[NMe₄]: The crude product was washed with hot hexane giving 46 mg of ~ 85% pure salt as an oily film that slowly glassified. Attempts to recrystallize from EtOH/H₂O mixtures were unsuccessful: ¹H NMR (CDCl₃) major signals δ 0.89 (t, *J* = 6.9 Hz, 3H), 0.91 (t, *J* = 6.9 Hz, 3H), 1.56 (quintet, *J* = 6.9 Hz, 2H), 1.78 (quintet, *J* = 7.0 Hz, 2H), 3.01 (s, 12H), 3.94 (t, *J* = 6.5 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 7.15 (d, *J* = 8.8 Hz, 2H); ¹¹B {¹H} NMR (acetone-*d*₆) δ -24.1 (4B), -16.1 (4B), 48.7 (1B). **1b**[**NMe**₄]: The crude product was washed with hot hexane giving 0.053 g of ~ 85% pure salt as a semi-crystalline paste. Attempts to recrystallize from EtOH/H₂O mixtures were unsuccessful: ¹H NMR (acetone- d_6) major signals δ 0.88 (t, J = 6.8 Hz, 3H), 0.91 (t, J = 7.0 Hz, 3H), 1.73 (quintet, J = 7.4 Hz, 2H), 2.59 (t, J = 7.4 Hz, 2H), 3.43 (s, 12H), 7.20 (d, J = 8.9 Hz, 2H), 7.31 (d, J = 8.9 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -23.9 (d, J = 129 Hz, 4B), -16.0 (d, J = 141 Hz, 4B), 48.0 (s, 1B).

1c[NMe₄]: Recrystallized from EtOH/H₂O mixtures (2x) giving 0.020 g (22% yield) of the pure salt as a white crystalline powder: mp 242 °C (DSC); ¹H NMR (acetone- d_6) δ 0.40-2.50 (m, 8H, B-H), 0.89 (t, J = 6.9 Hz, 3H), 0.91 (t, J = 7.1 Hz, 3H), 0.95-1.10 (m, 2H), 1.15-1.45 (m, 15H), 1.48-1.62 (m, 4H), 1.80-2.00 (m, 4H), 2.14 (br d, J = 11.2 Hz, 2H), 2.52 (tt, $J_1 = 12.2$ Hz, $J_2 = 3.5$ Hz, 1H), 3.43 (s, 12H), 7.18 (d, J = 8.9 Hz, 2H), 7.31 (d, J = 8.9 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -23.9 (d, J = 139 Hz, 4B), -16.0 (d, J = 145 Hz, 4B), 48.9 (s, 1B).

1d[**NMe₄**]: Recrystallized from EtOH/H₂O mixtures (2x) giving 0.041 g (25% yield) of pure salt as a white crystalline powder: mp 226 °C (DSC); ¹H NMR (300 MHz, acetone-*d*₆) δ 0.40-3.50 (m, 18H, B-H), 0.83 (t, *J* = 7.0 Hz, 3H), 0.91 (t, *J* = 7.1 Hz, 3H), 1.10-1.30 (m, 6H), 1.34-1.42 (m, 4H), 1.50-1.60 (m, 2H), 1.68-1.75 (m, 2H), 1.81-1.98 (m, 4H), 3.44 (s, 12H), 7.15 (d, *J* = 9.0 Hz, 2H), 7.33 (d, *J* = 9.0 Hz, 2H); ¹¹B NMR (acetone-*d*₆) δ -23.9 (d, *J* = 137 Hz, 4B), -15.9 (d, *J* = 152 Hz, 4B), -13.2 (d, *J* = 160 Hz, 5B), -12.6 (d, *J* = 158 Hz, 5B), 49.1 (s, 1B).

1e[NMe₄]: The crude product was washed with hot hexane and recrystallized from EtOH/H₂O mixtures (2x) giving 10 mg (26% yield) of the pure salt as a white crystalline powder: mp 197 °C (DSC); ¹H NMR (acetone- d_6) δ 0.40-2.50 (m, 8H, B-H), 0.90 (t, J = 7.8 Hz, 3H), 0.92 (t, J = 7.7 Hz, 3H), 1.05-1.17 (m, 2H), 1.22-1.45 (m, 15H), 1.45-1.62 (m, 4H), 1.85-2.01 (m, 6H), 2.54 (bt, J = 12.1 Hz, 1H), 3.45 (s, 12H), 7.19 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -23.9 (d, J = 132 Hz, 4B), -16.0 (d, J = 152 Hz, 4B), 48.3 (s, 1B).

1f[NMe₄]: Recrystallized from EtOH/H₂O mixtures (2x) giving 0.029 g (23% yield) of the pure salt as a white crystalline powder: mp 201 °C (DSC); ¹H NMR (acetone- d_6) δ 0.40-3.50 (m, 18H, B-H), 0.84 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 7.0 Hz, 3H), 1.10-1.30 (m, 6H), 1.32-1.43 (m, 4H), 1.55 (quintet, J = 7.0 Hz, 2H), 1.67-1.75 (m, 2H), 1.80-1.98 (m, 4H), 3.44 (s, 12H) 7.17 (d, J = 8.9 Hz, 2H), 7.34 (d, J = 8.8 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -23.9 (d, J = 138 Hz, 4B), -15.9 (d, J = 151 Hz, 4B), -12.3 (d, J = 164 Hz, 10B), 48.3 (s, 1B).

Preparation of $[closo-1-CB_9H_8-1-(N=N-C_6H_4-OC_9H_{19}-4)-10-C_6H_{13}]^- NMe_4^+ (2a[NMe_4]).$

A solution of 1-bromononane (0.08 mL, 0.4 mmol) in anhydrous CH₃CN (2 mL) was added to an orange solution of azophenol **5**[**NMe**₄] (0.042 g, 0.106 mmol, about 60% pure; contaminated with NMP) and NMe₄⁺OH·5H₂O (0.06 g, 0.32 mmol) in anhydrous CH₃CN (2 mL). The solution was stirred at 50 °C for 4 hr. The reaction mixture was evaporated to dryness, and the crude product was isolated by column chromatography (SiO₂, CH₃CN/CH₂Cl₂, 1:9). Washing with hot hexane gave 0.068 g of crude diazene **2a**[**NMe**₄] as a yellow/green viscous isotropic film that slowly crystallized. Attempts to recrystallize from MeOH or MeOH/H₂O mixtures were unsuccessful and the product was converted directly to **2a**[**Pyr**] without further purification: ¹H NMR (acetone- d_6) major signals δ 0.88 (t, J = 6.2 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H), 3.43 (s, 12H), 4.10 (t, J = 6.5 Hz, 2H), 7.07 (d, J = 8.9 Hz, 2H), 7.85 (d, J = 8.9 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -24.5 (d, J = 138 Hz, 4B), -17.1 (d, J = 146 Hz, 4B), 42.8 (s, 1B).

General Procedure for Preparation of Diazenes 2b[NHEt₃], 2c[NMe₄], and 2d[NHEt₃]

A solution of acid chloride **6** (4.0 equivalents) in anhydrous CH_2Cl_2 was added to an orange solution of azophenol **5**[**NMe**₄] (about 60% pure; contaminated with NMP) and NEt₃ (5.0 equivalents) in anhydrous CH_2Cl_2 . The bright yellow solution was stirred for 12 hrs, and the reaction progress was monitored by TLC ($R_f = 0.5$ in CH_3CN/CH_2Cl_2 , 1:9). The reaction mixture was worked up and the product was isolated as described for esters **1**[**NMe**₄]. Attempts to recrystallize from MeOH or MeOH/H₂O mixtures were unsuccessful and without crystallization further purification, the resulting diazenes **2b**[**NHEt**₃], **2c**[**NMe**₄], or **2d**[**NHEt**₃] were converted to the pyridinium salts **2**[**Pyr**].

2b[NHEt₃]: Washing with hot hexane gave 0.073 g (135% yield) of crude diazene as a yellow/green viscous isotropic film, which slowly crystallized: ¹H NMR (acetone- d_6) major signals δ 0.89 (t, J = 6.5 Hz, 3H), 0.92 (t, J = 6.9 Hz, 3H), 1.38 (t, J = 7.3 Hz, 9H), 1.58 (quintet, J = 7.1 Hz, 2H), 1.75 (quintet, J = 7.4 Hz, 2H), 2.63 (t, J = 7.4 Hz, 2H), 3.42 (q, J = 7.3 Hz, 6H), 7.31 (d, J = 8.7 Hz, 2H), 7.92 (d, J = 8.7 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -24.4 (d, J = 137 Hz, 4B), -16.9 (d, J = 146 Hz, 4B), 43.7 (s, 1B).

2c[NMe₄]: Washing with hot hexane gave 0.095 g (110% yield) of crude diazene as a yellow/green viscous isotropic film that slowly crystallized: ¹H NMR (acetone- d_6) major signals

δ 0.89 (t, J = 6.9 Hz, 3H), 0.92 (t, J = 7.0 Hz, 3H), 2.54 (tt, $J_1 = 12.2$ Hz, $J_2 = 3.5$ Hz, 1H), 3.43 (s, 12H), 7.29 (d, J = 8.8 Hz, 2H), 7.91 (d, J = 8.7 Hz, 2H); ¹¹B {¹H} NMR (acetone- d_6) δ -24.4 (4B), -16.9 (4B), 43.3 (s, 1B).

2d[NHEt₃]: Washing with hot hexane gave 0.087 g (105% yield) of ~ 95% pure diazene as a yellow/green viscous isotropic film that slowly crystallized: mp 155 °C, ¹H NMR (acetone- d_6) δ 0.40-3.50 (m, 18H, B-H), 0.83 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 7.0 Hz, 3H), 1.06-1.30 (m, 6H), 1.33-1.43 (m, 4H), 1.37 (t, J = 7.3 Hz, 9H), 1.52-1.61 (m, 2H), 1.67-1.76 (m, 2H), 1.84-2.00 (m, 4H), 3.39 (q, J = 7.3 Hz, 6H), 7.25 (d, J = 8.8 Hz, 2H), 7.91 (d, J = 8.8 Hz, 2H); ¹¹B NMR (acetone- d_6) δ -24.3 (d, J = 137 Hz, 4B), -16.7 (d, J = 157 Hz, 4B), -13.2 (d, J = 151 Hz, 5B), -12.6 (d, J = 158 Hz, 5B), 43.1 (s, 1B).

Preparation of [*closo*-1-CB₉H₈-1-COOH-10-C₆H₁₃][•]NMe₄⁺ (3[NMe₄])

To a 100 mL three-necked flask, under inert atmosphere, equipped with a magnetic stir bar, reflux condenser, septum, and a glass stopcock was suspended solid anhydrous $ZnCl_2$ (2.29 g, 16.8 mmol) in anhydrous THF (16 mL). $C_6H_{13}MgBr$ in Et₂O (9.2 mL, 16.0 mmol, 1.74 M) was added, and the exothermic reaction was stirred briefly (15 min) producing a white precipitate. Anhydrous NMP (8 mL), Pd₂dba₃ (0.061 g, 0.067 mmol), and [HPCy₃]⁺ BF₄⁻ (0.099 g, 0.268 mmol) were added, and the reaction mixture turned dark green and slowly faded to red/orange. After 5 mins, acid¹ [*closo*-1-CB₉H₈-1-COOH-10-I]⁻ NMe₄⁺ (**8**[NMe₄], 0.482 g, 1.33 mmol) was added. The septum was replaced with an additional glass stopcock, and the reaction was stirred at 85°C overnight. After brief heating, the reaction turned from red/orange to black. Sat. NH₄Cl (50 mL) was added, excess THF was removed *in vacuo*, and the remaining aqueous layer was extracted with Et₂O (3 x 20 mL). The organic layers were combined, dried (Na₂SO₄), and removed giving a black sludge. Excess NMP and 1-hexanol were removed under vacuum (60 °C, 0.5 mm Hg) and the residue (1.13 g) was separated by column chromatography (SiO₂, CH₃CN/CH₂Cl₂, 1:4) giving 0.586 g of [*closo*-1-CB₉H₈-1-COOH-10-C₆H₁₃]⁻H₃O⁺ (**3**[H₃O]) as a yellow/orange oil, which contained remnant NMP by ¹H NMR: ¹¹B {¹H} NMR (CD₃CN) δ - 24.3 (4B), -16.6 (4B), 47.3 (1B).

The crude acid extract was redissolved in 10 % HCl (50 mL) and extracted with Et₂O (3 x 20 mL). The organic layers were combined, and H₂O (10 mL) was added. The Et₂O was removed *in vacuo*, and the aqueous layer was filtered. NMe₄⁺Cl⁻ (0.150 g, 1.37 mmol) was added to the filtrate, and a white precipitate formed, which was filtered, washed (H₂O), and dried *in vacuo* giving 0.383 g (89% yield) of pure **3**[**NMe₄**]: mp 135 °C dec; ¹H NMR (acetone- d_6) δ 0.40-2.50 (m, 8H, B-H), 0.91 (t, J = 7.0 Hz, 3H), 1.35-1.41 (m, 4H), 1.56 (quintet, J = 6.9 Hz, 2H), 1.81-1.96 (m, 4H), 3.45 (s, 12H); ¹¹B NMR (acetone- d_6) δ -24.1 (d, J = 147 Hz, 4B), -16.5 (d, J = 157 Hz, 4B), 46.8 (s, 1B); MS (FAB): m/z 244-248 (M-H, max at 247, 100%); FAB-HRMS(-): Calcd. for C₈H₂₂B₉O₂ m/z: 249.2460; found; 249.2464.

Preparation of [*closo*-1-CB₉H₈-1-(N=N-C₆H₄-OH-4)-10-C₆H₁₃]^{*}NMe₄⁺(5[NMe₄])

To a 100 mL three-necked flask, under inert atmosphere, equipped with a magnetic stir bar, septum, and two glass stopcocks was suspended solid anhydrous $ZnCl_2$ (1.04 g, 7.62 mmol) in anhydrous THF (5 mL). C₆H₁₃MgBr in Et₂O (9.2 mL, 16.0 mmol, 1.74 M) was added, and the exothermic reaction was stirred briefly (15 min) producing a white precipitate. Anhydrous LiCl (0.3 g, 6.93 mmol) dissolved in anhydrous THF (10 mL) was added producing a homogenous solution. Anhydrous NMP (8 mL), Pd₂dba₃ (0.019 g, 0.021 mmol), and [HPCy₃]⁺ BF₄⁻ (0.031 g, 0.084 mmol) were added subsequently, and the reaction mixture turned dark green and slowly faded to red/orange. After 5 mins, [*closo*-1-CB₉H₈-1-(N=N-C₆H₄-OH-4)-10-I]⁻NMe₄⁺ (**9**[NMe₄], 0.275 g, 0.63 mmol) was added, and the reaction was stirred at rt overnight. Sat. NH₄Cl (25 mL) was added, THF was removed *in vacuo*, and the remaining aqueous layer was extracted with Et₂O (3 x 20 mL). The organic layers were combined, dried (Na₂SO₄), and solvents removed giving a residue as a black sludge. Excess NMP and 1-hexanol were removed under vacuum (60 °C, 0.5 mm Hg) and the resulting residue (0.740 g) was separated by column chromatography (SiO₂, CH₃CN/CH₂Cl₂, 1:4) giving 0.370 g of (**5**[H₃O]) as a yellow/orange film which solidified on standing: ¹H NMR (CD₃CN) major signals δ 0.95 (t, *J* = 7.0 Hz, 3H), 6.99 (d, *J* = 8.8 Hz, 2H), 7.79 (d, *J* = 8.8 Hz, 2H), 8.21 (s, 1H); ¹¹B NMR (CD₃CN) δ -24.8 (d, *J* = 138 Hz, 4B), -17.4 (d, *J* = 150 Hz, 4B), 42.7 (s, 1B).

The crude acid extract was redissolved in 10% HCl (50 mL) and extracted with Et₂O (3 x 20 mL). The deep red organic layers were combined, and H₂O (10 mL) was added. The Et₂O was removed *in vacuo* giving a red film deposit. H₂O was decanted, and the red film was further washed with H₂O. The water was filtered, and any insoluble matter was recombined with the red film using CH₂Cl₂ (10 mL). NMe₄⁺Cl⁻ (0.093 g, 0.85 mmol) dissolved in H₂O (10 mL) was added, and the biphasic mixture was vigorously stirred for 1 hr. The deep red organic layer slowly began to turn light orange as a result. The organic layer was separated, and the H₂O was further extracted with CH₂Cl₂. The organic layers were combined, dried (Na₂SO₄), and solvent evaporated giving 320 mg (67% yield) of ~60% pure **5**[NMe₄] (contains ~40% NMP by ¹H NMR) as a yellow/orange viscous film: ¹H NMR (CD₃CN) major signals δ 0.93 (t, *J* = 7.0 Hz, 3H), 1.57 (quintet, *J* = 7.0 Hz, 2H), 3.05 (s, 12H), 6.96 (d, *J* = 8.8 Hz, 2H), 7.77 (d, *J* = 8.8 Hz, 2H); ¹¹B NMR (CD₃CN) δ -24.8 (d, *J* = 139 Hz, 4B), -17.4 (d, *J* = 150 Hz, 4B), 42.6 (s, 1B);

MS (FAB): *m/z* 320-327 (M-H, max at 324, 100%); FAB-HRMS(-): calcd. for C₁₃H₂₆B₉N₂O *m/z*: 325.2883; found; 325.2877.

Preparation of *N***-Butyl-4-heptyloxypyridinium bromide (7)**

4-Heptyloxypyridine² (1.00 g, 5.2 mmol) and 1-bromobutane (1.67 mL, 15.6 mmol) dissolved in anhydrous CH₃CN (10 mL) were stirred at reflux for 6 hrs. Solvent was removed *in vacuo*, and the crude product (1.68 g) was passed through a short silica gel plug (CH₃CN/CH₂Cl₂, 1:9) giving 1.30 g (77% yield) of the pure salt **7** as a colorless oil, which slowly crystallized: mp 34 °C; ¹H NMR (300 MHz, CDCl₃) δ 0.85 (t, *J* = 6.7 Hz, 3H), 0.92 (t, *J* = 7.4 Hz, 3H), 1.26-1.40 (m, 10H), 1.82 (quintet, *J* = 7.1 Hz, 2H), 1.95 (quintet, *J* = 7.2 Hz, 2H), 4.24 (t, *J* = 6.3 Hz, 2H), 4.70 (t, *J* = 7.3 Hz, 2H), 7.42 (d, *J* = 6.5 Hz, 2H), 9.21 (d, *J* = 6.6 Hz, 2H); UV (MeCN) λ_{max} 246 nm (log ε = 4.20), (CH₂ClCH₂Cl) λ_{max} 244 nm (log ε = 4.6). Anal. Calcd. for C₁₆H₂₈BrNO: C, 58.18; H, 8.54; N, 4.24; Found: C, 56.06; H, 8.77; N, 4.40.

Preparation of [*closo*-1-CB₉H₈-1-(N=N-C₆H₄-OH-4)-10-I]⁻NMe₄⁺ (9[NMe₄])

 $[Closo-1-CB_9H_8-1-N_2-10-I]$ (**11**, 0.368 g, 1.14 mmol) was slowly added to a solution of NMe₄⁺OH⁻ · 5H₂O (2.5 g, 13.60 mmol) and phenol (1.27 g, 13.5 mmol) in H₂O/CH₃CN (1:4 vol/vol) at 5 °C. Upon addition of **11**, an orange solution formed. The reaction was warmed to rt, and stirring continued for 1 hr. The reaction mixture was acidified with 10 % HCl and CH₃CN was removed *in vacuo*. The aqueous solution was extracted with Et₂O (3 x 20 mL), or until the organic layer was no longer colored. The organic layers were combined, dried (Na₂SO₄), and solvent evaporated giving 1.65 g of a crude product as a red/orange oil. The

crude product was purified by column chromatography (SiO₂, CH₃CN/CH₂Cl₂, 1:6) giving 0.531 g of [*closo*-1-CB₉H₈-1-(N=N-C₆H₄-OH-4)-10-I]⁻H₃O⁺ (**9**[H₃O]) as a yellow/orange film that slowly crystallized: ¹H NMR (CD₃CN) δ 6.97 (d, *J* = 8.8 Hz, 2H); 7.80 (d, *J* = 8.8 Hz, 2H); ¹¹B {¹H} NMR (CD₃CN) δ -20.5 (4B), -16.1 (4B), 17.3 (1B).

The crude phenol was redissolved in Et₂O (10 mL), H₂O (8 mL) was added, and the Et₂O was removed *in vacuo*. The mother liquor was separated from a yellow insoluble material (0.105 g), and NMe₄⁺ Cl⁻ (0.125 g, 1.14 mmol) was added to the mother liquor. The precipitate was filtered and dried *in vacuo* giving 0.356 g of **9**[**NMe₄**] as a yellow solid. ¹H and ¹¹B NMR analysis demonstrated that the insoluble material from removal of Et₂O was also **9**[**NMe₄**]. The combined yield of **9**[**NMe₄**] was 0.461 g (93% yield). A small portion of the product was recrystallized from hot CH₃OH/H₂O layered with hexane, which upon cooling gave yellow crystalline leaflets for analysis: mp 100 °C dec; ¹H NMR (CD₃CN) δ 0.4-2.50 (m, 8H, B-H), 3.05 (s, 12H), 6.97 (d, *J* = 8.8 Hz, 2H), 7.45 (s, 1H), 7.80 (d, *J* = 8.4 Hz, 2H); ¹¹B NMR (CD₃CN) δ -20.5 (d, *J* = 148 Hz, 4B), -16.1 (d, *J* = 160 Hz, 4B), 17.2 (s, 1B). Anal. Calcd. for C₁₁H₂₅B₉IN₃O: C, 30.06; H, 5.73; N, 9.56. Found: C, 29.47; H, 5.95; N, 9.21.

Characterization of [closo-1-CB₉H₈-1-COOH-10-PCy₃] (10).

Phosphonium zwitterion **10** was isolated from the main fraction of acid **3[H₃O]** separated by chromatography from the reaction mixture of iodo acid **8[NMe₄]** (0.225 g, 0.62 mmol), hexylzinc chloride (3.1 mmol), $[HPCy_3]^+BF_4^-$ (0.018 g, 0.050 mmol), and Pd₂dba₃ (0.011 g, 0.012 mmol) as described above. Thus, washing the acid fraction (0.192 g) with CH₃OH gave 10 mg (~ 3% yield) of insoluble material identified as the phosphonium zwitterion **10**: ¹H NMR (acetone-*d*₆) δ 0.40-2.50 (m, 8H, B-H), 1.30-1.48 (m, 10H), 1.74-1.76 (m, 3H),

1.81-1.91 (m, 11H), 2.22-2.25 (m, 6H), 2.66 (q, J = 11.9 Hz, 3H), COOH not observed; ¹¹B NMR (acetone- d_6) δ -19.5 (d, J = 125 Hz, 4B), -13.4 (d, J = 158 Hz, 4B), 21.7 (d, J = 189 Hz, 1B); MS (FAB): m/z 439-445 (M-H, max at 443, 100%); FAB-HRMS(+): calcd. for $C_{20}H_{42}B_9O_2P$ m/z: 444.3760; found; 444.3758.

Preparation of [*closo*-1-CB₉H₈-1-N₂-10-I] (11).³

A suspension of [*closo*-1-CB₉H₈-1-NHBoc-10-I]⁻ NEt₄⁺ (**12**[NEt₄], 1.18 g, 2.41 mmol) in a 1:3 mixture of conc. HCl and CH₃OH (50 mL) was heated gently until all solids dissolved, and stirring was continued at rt for 18 hrs. H₂O (20 mL) was added and CH₃OH was removed *in vacuo*. Conc. HCl (3 mL) was added, and the resulting solution was extracted with Et₂O (3 x 30 mL). The organic layers were combined, dried (Na₂SO₄), and solvents evaporated *in vacuo* to give 0.604 g of crude [*closo*-1-CB₉H₈-1-NH₃-10-I] as a transparent film, which slowly solidified as a light brown glass:¹ ¹H NMR (CD₃CN) δ 8.55 (s); ¹¹B NMR (CD₃CN) δ -21.3 (d, J = 145 Hz, 4B), -16.3 (d, J = 156 Hz, 4B), 16.9 (s, 1B); IR 3185 and 3123 (N-H) cm⁻¹.

The crude product was dissolved in a 1:1 mixture of AcOH/H₂O (6 mL), and an aqueous solution of NaNO₂ (0.183 g, 2.65 mmol) in H₂O (4 mL) was added dropwise (~1 drop/sec) at 0 °C. Immediately, a white precipitate began to form. The reaction temperature was maintained for 30 min, H₂O (2 mL) was added, and the precipitate was filtered and dried to give 0.577 g (88% yield) of **11** as a white crystalline solid: mp 106 °C dec; ¹H NMR (CD₃CN) δ 1.28 (q, *J* = 156 Hz, 4H), 2.59 (q, *J* = 170 Hz, 4H); ¹¹B NMR (CD₃CN) δ -18.3 (d, *J* = 152 Hz, 4B), -8.8 (d, *J* = 169 Hz, 4B), 34.6 (s, 1B); IR 2245 (N₂) cm⁻¹.

Preparation of [closo-1-CB₉H₈-1-NHBoc-10-I]⁻NEt₄⁺ (12[NEt₄]).

A suspension of acid¹ [*closo*-1-CB₉H₈-1-COOH-10-I]⁻NEt₄⁺ (**8**[**NMe**₄], 2.94 g, 7.02 mmol) in anhydrous CH₂Cl₂ (30 mL) was treated with neat (COCl)₂ (0.65 mL, 7.72 mmol). Vigorous bubbling of CO and CO₂ gases was observed followed by the dissolution of the substrate and the formation of a clear slight yellow solution. The solution was stirred for 1 hr at rt followed by filtration to remove insoluble particulates. The mother liquor was evaporated to dryness giving 3.10 g of crude [*closo*-1-CB₉H₉-1-COCI]⁻ NEt₄⁺ as a white solid: ¹¹B {¹H} NMR δ (CD₃CN) -19.3 (4B), -13.6 (4B), 23.4 (1B); IR 2582 (B-H), 1772 (C=O) cm⁻¹.

Crude [*closo*-1-CB₉H₈-1-COCI-10-I]⁻ NEt₄⁺ (3.10 g, 7.02 mmol) was dissolved in anhydrous CH₂Cl₂ (10 mL) and added via syringe to solid anhydrous ZnCl₂ (0.096 g, 0.702 mmol) under N₂ atmosphere. The reaction mixture was cooled to 0 °C, and Me₃SiN₃ (1.01 mL, 7.72 mmol) was added at once. The reaction mixture was stirred at 0 °C for an additional 30 min after which it was stirred for 4 hrs at rt. The reaction mixture was poured into ice-cold H₂O (50 mL) and extracted with CH₂Cl₂ (3 x 20 mL). The organic layers were combined, dried (MgSO₄), filtered, and solvent was removed *in vacuo* giving 3.09 g of crude [*closo*-1-CB₉H₈-1-CON₃-10-I]⁻ NEt₄⁺ as a white crystalline solid: ¹¹B {¹H} NMR (CD₃CN) δ -19.7 (4B), -14.9 (4B), 21.5 (1B); IR 2570 and 2523 (B-H), 2137 (N₃), 1686 (C=O) cm⁻¹. The crude product was contaminated with about 15% of [*closo*-1-CB₉H₈-1-COOH-10-I]⁻NEt₄⁺ (**8**[NEt₄])

Crude $[closo-1-CB_9H_8-1-CON_3-10-I]^-$ NEt₄⁺ (3.09 g, 6.96 mmol) was dissolved in anhydrous CH₃CN (30 mL) and refluxed for 1 hr. The reaction was cooled to rt, solvent removed, and the residue was dried *in vacuo* giving 2.90 g of crude $[closo-1-CB_9H_8-1-NCO-10-I]^-$ NEt₄⁺ as a slight yellow solid: ¹¹B {¹H} NMR (CD₃CN) δ -22.0 (4B), -15.5 (4B), 13.8 (1B); IR 2564 and 2525 (B-H), 2265 (N=C=O) cm⁻¹. A solution of anhydrous *tert*-butanol (3.33 mL, 34.85 mmol), anhydrous CH₃CN (30 mL), and crude [*closo*-1-CB₉H₈-1-NCO-10-I]⁻ NEt₄⁺ (2.90 g, 6.97 mmol) was stirred at reflux for 2 hr after which solvents were removed leaving 3.06 g of crude **12**[NEt₄] as a yellow solid. The crude solid was dissolved in CH₂Cl₂ and passed through a silica gel plug first washed with 2% NEt₃ in CH₂Cl₂. Elution with a buffered CH₃CN/CH₂Cl₂ solution (2% NEt₃, 10% CH₃CN, 88% CH₂Cl₂) afforded 1.98 g (53% yield based on starting acid [*closo*-1-CB₉H₈-1-COOH-10-I]⁻ NEt₄⁺) of pure **12**[NEt₄] as a slight yellow solid. A small portion of the product was recrystallized from aqueous EtOH for analysis: mp 156-158 °C; ¹H NMR (CD₃CN) δ 0.40-2.50 (m, 8H, B-H), 1.20 (t, *J* = 7.2 Hz, 12H), 1.48 (s, 9H), 3.15 (q, *J* = 7.2 Hz, 8H), 7.08 (s, 1H); ¹¹B NMR (CD₃CN) δ -22.1 (d, *J* = 142 Hz, 4B), -16.7 (d, *J* = 155 Hz, 4B), 13.0 (1B); IR 3305 and 3233 (N-H), 2564 and 2520 (B-H), 1679 (C=O) cm⁻¹. Anal. Calcd. for C₁₄H₃₈B₉IN₂O₂: C, 34.27; H, 7.81; N, 5.71. Found: C, 34.32; H, 7.79; N, 5.71.

Further elution gave 0.75 g of a 90:10 mixture of $12[NEt_4]$ and staring acid [*closo*-1-CB₉H₈-1-COOH-10-I]⁻NEt₄⁺ (8[NEt₄]).

4. Computational Details

Geometry optimization for **1d[Pyr]**, **1f[Pyr]**, and **2d[Pyr]** was undertaken without symmetry constraints and default convergence limits with the HF/6-31G(d) method using the Gaussian 98 computational package.⁴ The optimized geometries of the models were perturbed several times to assure conformational minimum and the fully optimized structures are shown in Figure S9.

Geometry optimizations with smaller basis set (3-21G*) gave the unrealistic dihedral angle between the carboxyl group and the phenyl ring (COO–Ph). While the angle typically

found in solid-state structures is in the range of 45° – 90° , the HF/3-21G(d) level calculations optimized these two groups as coplanar. Realistic geometries were obtained using the HF/6-31G(d) method.

1d

Figure S9. Molecular structures of anions **1d**, **1f**, and **2d** obtained by full geometry optimization at the HF/6-31G(d) level of theory.

5. Archive for HF/6-31G(d) computational results

ld[Pyr]

```
1\1\GINC-MONSTER\F0pt\RHF\6-31G(d)\C22H46B1904(1-)\PIOTR\27-Feb-2009\0
\\#P HF/6-31G* FOPT GEOM(NOANGLE,NODISTANCE) FCHECK\\C6-CB9-COO-Ph-OCO
-C2B10-C5\\-1,1\B,-1.472281901,-1.891792648,-5.5640765733\B,0.09694452
26,0.4445953602,6.0278543523\B,0.9582606401,2.0214713824,6.0685636989\
B,-0.1590654164,-0.5680985219,-5.5183583448\B,1.2810195044,-0.83054897
```

83,5.6010574292\B,-1.4664850599,0.7212046433,-5.3039051623\B,2.6732374 677,1.7218559274,5.6569957207\B,-2.7786684128,-0.603977196,-5.35053019 78\B,2.8709187498,-0.0400911823,5.3624352573\B,-2.4919309858,-1.367811 4934,-6.9756394537\B,3.3617291335,0.6795977544,6.9107497278\B,-0.64059 06889,-1.3511918141,-7.0872706386\B,-0.6443018991,0.4958048255,-6.9098 76671\B,2.1832419571,1.9480247039,7.3386087199\B,2.5045855052,-0.88503 28623,6.8731104052\B,-2.4955386398,0.4772638918,-6.7837032135\B,-1.638 1537299,-0.3263302802,-8.0297996391\B,0.599666178,1.1620954227,7.57349 10122\B,0.7989757145,-0.5870917862,7.2822371295\C,-1.4076843016,-0.676 0320159,-4.5133458599\H,0.2105698977,-1.3599743279,7.9510974498\C,-1.3 375905556,-0.8516920015,-3.0493925944\H,-0.1256156367,1.534525414,8.42 67040057\0,-0.4353377728,-0.0096705219,-2.491333872\C,-0.1842225485,-0 .0488793413,-1.1490686898\H,3.0445724063,-1.8550262449,7.2712588373\C, -1.1724463093,0.1965740901,-0.2098954779\H,2.5041623415,2.8544269933,8 .0160046568\C,-0.8465634941,0.2121332626,1.1335660632\H,4.4655344062,0 .7325654623,7.3249484349\C,0.4603270391,-0.0084188341,1.5160345483\H,3 .5895894447,-0.4093731908,4.5048975681\C,1.4505712336,-0.2480569782,0. 5906526816\H,3.2607670568,2.4903079031,4.9894734853\C,1.1220050419,-0. 2682109903,-0.7549017956\H,0.9598081351,-1.7278351346,4.9162430407\H,- $1.4298935228, -3.0030826367, -5.153935749 \setminus H, 0.4183307569, 2.9869785068, 5.$ 6718630523\H,0.9417801861,-0.6172153926,-5.0780057487\H,-1.0020309582, 0.3926434158,5.6063005068\H,-1.4436722248,1.7345735958,-4.688109664\C, 2.0594910253,0.3541787464,7.9831440193\H,-3.8080450339,-0.6592895233,-4.7647788319\C,1.4110564661,0.7728744578,4.9756729123\H,-3.3089773941, ,0.1308325149,-2.0929000554,-7.6158503066\C,2.7807619509,1.2646561963, 10.324679636\H,0.1187570825,1.3325924197,-7.2865797938\C,3.0550684079 0.8474012327,11.7716036129\H,-3.3144899932,1.303063953,-7.0519257723\C ,3.473768675,2.0186084642,12.6622303438\C,-1.7135687152,-0.1377241997, -9.6243286609\C,-2.7447829092,-1.0153669083,-10.3455779551\C,-2.781969 1814,-0.7984072448,-11.8611180805\C,-3.8102707771,-1.6738965608,-12.58 08133108\C,-3.8474130809,-1.4570327382,-14.0950704716\C,-4.8776068854, -2.3360203113,-14.8047874051\H,-4.669618383,-3.3904507006,-14.64358085 45\H,-5.8804524832,-2.1399022429,-14.4347820727\H,-4.8804514558,-2.159 69896,-15.8772909465\H,-4.0628772783,-0.4108137206,-14.3039239206\H,-2 .8608330836,-1.6522710329,-14.5112084375\H,-3.5973616331,-2.7221219949 -12.3753425896\H,-4.7994907821,-1.4805354762,-12.1680497048\H,-2.9961 952457,0.2495887744,-12.0693818239\H,-1.793463701,-0.9926573494,-12.27 67083521\H,-2.5352441501,-2.0635420068,-10.1415154947\H,-3.7342679554, -0.8244953676, -9.9346800649\H, -1.9288544895, 0.907166181, -9.8523848707\ H,-0.730916266,-0.3326505223,-10.0563023627\C,3.7473442793,1.600671809 7,14.1065595693\H,-2.1832111184,0.3578313373,-0.527953657\H,-1.6000983 655,0.389900712,1.8782164883\0,0.7730324397,-0.0623887634,2.8740423197 \C,1.1075748325,1.0451005727,3.5122115792\0,1.1713235598,2.1218451422, 3.0330489367\H,2.4597729192,-0.4222377535,0.9148853462\H,1.8683707818, -0.4508728969,-1.5046448446\H,2.8645089209,1.1601644807,14.561377183\H ,4.5460298596,0.8659668735,14.157749711\H,4.0417863297,2.4517380131,14 .71289067\H,4.3638016497,2.4861002106,12.2469809903\H,2.6951842699,2.7 780299335,12.6475187605\H,2.164886375,0.3800428884,12.1894243137\H,3.8 349416712,0.0878344916,11.7885592185\H,3.6708628286,1.7276092801,9.909 3307131\H,2.0007018574,2.0199079298,10.3102622417\H,1.4839101118,-0.38 $\texttt{80111873,9.9005415366} \\ \texttt{H,3.1483436365,-0.6795339741,9.5012148038} \\ \texttt{0,-1.9} \\ \texttt{$ 67007444,-1.6163270784,-2.398554184\\Version=x86-Linux-G98RevA.9\HF=-1 628.5781552\RMSD=8.383e-09\RMSF=1.795e-06\Dipole=3.136707,0.6947295,11 .8374991\PG=C01 [X(C22H46B19O4)]\\@

lf[Pyr]

1\1\GINC-MONSTER\F0pt\RHF\6-31G(d)\C21H46B1902(1-)\PIOTR\16-Mar-2009\0 \\#P HF/6-31G* FOPT GEOM(NOANGLE,NODISTANCE) FCHECK\\C6-CB9-COO-Ph-C2B 10-C5, C1 symm\\-1,1\B,-0.1343409572,1.8845616789,-4.7705193445\B,1.68 5210941,-0.0777090148,4.9761347764\B,0.4281462969,-1.3422942335,5.0052 326796\B,-1.4488726573,0.6587359447,-4.2721072761\B,0.880711614,1.5139 875294,5.0114301265\B,-0.220221322,-0.7137658026,-4.405502625\B,-1.158 7729259,-0.5304977493,5.0783370713\B,1.0946132061,0.5137454342,-4.9069 246045\B,-0.8782364253,1.233647506,5.0847018421\B,0.3735081756,1.25706 76013,-6.3999600467\B,-1.2444200091,0.3797156203,6.5952807036\B,-1.420 9314599,1.36635681,-5.9466464812\B,-1.4754449321,-0.4699807845,-5.6966 420067\B,-0.4415458728,-1.2097229392,6.5414458915\B,0.0137437521,1.639 9942556,6.552625634\B,0.3225034255,-0.5817116106,-6.1375002916\B,-0.81 96300001,0.253109668,-7.1011085519\B,1.3127559662,-0.9267393431,6.4851 7425\B,1.5925948919,0.8334209348,6.4834552834\C,0.0515135927,0.7022012 567,-3.6976324226\H,2.5105327086,1.275229792,7.0791645047\C,0.44278327 06,0.9138894081,-2.2899171316\H,2.0511740638,-1.6355942293,7.073823975 4\0,-0.3012859744,0.1546272955,-1.4509409106\C,-0.1249349892,0.2091272 484,-0.0993449936\H,-0.1225916738,2.6205456837,7.1949973879\C,1.096612 845,-0.0232589187,0.506702796\H,-0.8823762738,-2.1183522885,7.14590904 52\C,1.1832275485,-0.0330711296,1.8863663796\H,-2.2099312534,0.5344028 312,7.2572527121\C,0.0654048541,0.1807681508,2.6874840662\H,-1.6118105 498,1.9589085341,4.51776978\C,-1.1522928311,0.4051053751,2.054535103\H 0.6749829363\H,1.3126212937,2.4130254364,4.3849272492\H,0.0158179365,3 -2.3578702686,0.7962238699,-3.5218990642\H,2.6769650046,-0.2335745411, 6,0.134958526,7.3474778714\H,2.2548727017,0.5075057011,-4.66323329\C,0 .1568605819,0.1665899672,4.2045411037\H,1.0664405703,1.9459800651,-7.0 845785395\C,0.3724510235,0.1896223663,8.882751629\H,-2.267497054,2.149 6991099,-6.2527193365\C,-0.2026009676,-1.0027537481,9.6494754271\H,-2. 3654291447,-1.2592422163,-5.7910480217\C,-0.0466295216,-0.8270967711,1 1.1619736578\H,0.9756139848,-1.4696320466,-6.5946712518\C,-0.611463301 8,-2.0022470318,11.9621163452\C,-1.2421257007,0.0527836159,-8.63910783 77\C,-0.0772583537,-0.151392728,-9.6172871163\C,-0.5216662152,-0.33496 20864,-11.0713347518\C,0.6401087002,-0.5390039761,-12.0462605362\C,0.1 963273833,-0.7222064405,-13.4991471882\C,1.3639762954,-0.9253384559,-1 4.4650437591\H,2.0386795382,-0.0735531483,-14.4477905143\H,1.942295231 3,-1.8064318517,-14.1998981958\H,1.0177885606,-1.0523486599,-15.487487 1224\H,-0.4772114764,-1.5746204443,-13.5652927824\H,-0.3815128572,0.14 56693434,-13.8114117182\H,1.3159979003,0.3128299023,-11.9840739152\H,1 .2204083628,-1.4076547909,-11.7379512804\H,-1.1970465724,-1.1877616131 ,-11.1363679482\H,-1.1015118815,0.5335795034,-11.3827958368\H,0.598941 3313,0.6988753001,-9.5573449051\H,0.5042893332,-1.0187314017,-9.311769 3463\H,-1.9167623518,-0.8006889868,-8.7208102335\H,-1.8235315363,0.915 2495775,-8.9683860801\C,-0.4550341794,-1.8255250338,13.472093959\H,1.9 713868974,-0.1827373799,-0.0913907151\H,2.1418560653,-0.2133453079,2.3 5912141413,0.1899253903\H,0.5910969984,-1.7305519079,13.74958303\H,-0. 9700052388,-0.9335959016,13.8180395334\H,-0.8644659872,-2.6739086932,1 4.0119639561\H,-1.6645124954,-2.1287426776,11.7207596651\H,-0.11543198 64,-2.9195567454,11.652829036\H,1.0070422061,-0.7013213786,11.40594866 74\H,-0.5434385708,0.0902012721,11.4739274962\H,-1.2543094459,-1.12500 69499,9.4084338358\H,0.2961594901,-1.9164726886,9.3404609488\H,1.41826 $23081, 0.304794114, 9.1443943892 \ H, -0.1273335362, 1.0936292409, 9.21202759$ 87\0,1.2892044996,1.6426662314,-1.8943572893\\Version=x86-Linux-G98Rev A.9\HF=-1440.9762002\RMSD=4.737e-09\RMSF=7.502e-07\Dipole=0.2479015,-1 .175666,10.0318401\PG=C01 [X(C21H46B19O2)]\\@

2d[Pyr]

1\1\GINC-MONSTER\F0pt\RHF\6-31G(d)\C21H46B19N202(1-)\PIOTR\10-Mar-2009 \0\\#P HF/6-31G* FOPT GEOM(NOANGLE,NODISTANCE) FCHECK\\C6-CB9-N=N-Ph-O CO-C2B10-C5, after optimin\\-1,1\B,0.8062021296,-0.1565037315,5.808191 1474\B,-0.2186468828,0.9733580995,-5.6190039822\B,-0.9150560512,-0.643 4785768,-5.9463029643\B,-0.6963181484,-1.2359894678,5.5682599713\B,1.5 643316836,0.7979037649,-5.5760128927\B,-1.7645074341,0.2731405151,5.49 95178745\B,0.4392102282,-1.8142152689,-6.1295148285\B,-0.257917378,1.3 462269089,5.7399039632\B,1.9712405661,-0.9224566476,-5.903205077\B,0.3 902110793,0.7484543194,7.3325745316\B,1.398350602,-1.3191993699,-7.533 9648011\B,0.0909963601,-1.0779009647,7.2016134191\B,-1.7262791766,-0.7 656609638,6.9909952959\B,-0.3781915308,-1.1604211518,-7.55051766\B,2.0 968367166,0.2837973429,-7.1853590872\B,-1.4240150096,1.0619870989,7.10 40103347\B,-0.8065234673,-0.0571920553,8.244516668\B,-0.7726838909,0.5 537349217,-7.2478659986\B,0.7541624226,1.4422212444,-7.0135122265\C,-0 .3624312267,0.0967950449,4.7406015452\H,0.8647533851,2.5363466491,-7.4 397447877\N,-0.1069499523,0.2173511817,3.3435321371\H,-1.6691629846,1. 0647792991,-7.8202535635\N,-0.887168336,-0.3704363428,2.6180272608\C,-252046201\C,-1.5198642669,-0.8526564289,0.3762612999\H,-1.0244159258,- $1.7928235801, -8.3030626867 \setminus C, -1.3642021146, -0.7755742878, -0.9989602265$ \H,1.9362030003,-2.042256534,-8.2957557734\C,-0.2925226383,-0.07618736 21,-1.5033518144\H,2.8648320384,-1.4267813426,-5.3306347551\C,0.622330 5117,0.5481647058,-0.6768269658\H,0.3245662103,-2.9037276861,-5.703578 6801\C,0.4601736107,0.468880591,0.6920053574\H,2.1972462724,1.40909477 8,-4.7923251204\H,1.9135548524,-0.3113532768,5.4087835012\H,-1.9052499 314,-0.9784407449,-5.4028053842\H,-0.79133685,-2.2619222332,4.98162751 72\H,-0.7565064709,1.7056909918,-4.8761684063\H,-2.7370603077,0.487327 557,4.8557973065\C,0.6476160046,0.1135729618,-8.1039673339\H,-0.017988 5491,2.4160507438,5.2839963161\C,0.5407397412,-0.4739057523,-5.0572588 19\H,1.2482899607,1.380631034,7.8684097695\C,0.7519674053,0.4621890517 ,-9.6001721045\H,0.6867571218,-2.0142222241,7.641518827\C,-0.091315060 9,-0.3778993574,-10.5612066994\H,-2.6827723593,-1.4306787893,7.2517027 318\C,0.1029017809,0.0656739589,-12.0132522358\H,-2.1265326772,1.95942 34874,7.4596845495\C,-0.7265638462,-0.7529275759,-13.0042750042\C,-1.0 461728609,-0.1543019631,9.8318081723\C,-0.0468527981,0.6215163246,10.6 996650838\C,-0.3159392162,0.5012918974,12.20256939\C,0.6810534685,1.27 50391601,13.0681733566\C,0.4120491977,1.1548785886,14.5697155416\C,1.4 252617\H,1.3928380606,2.9912538358,15.186840929\H,1.196580582,1.826813 6935,16.4856419816\H,-0.594638421,1.508425535,14.7847169118\H,0.432287 5203,0.105097007,14.8563825904\H,1.6900062752,0.9232220373,12.85696836 23\H,0.6630059137,2.3267233845,12.7852947881\H,-1.3245520421,0.8540247 478,12.4168424923\H,-0.2969869808,-0.5501472575,12.4884703036\H,0.9625 333251,0.2727509441,10.4903154373\H,-0.062358869,1.6728543186,10.41878 71622\H,-2.0522777526,0.1969006346,10.0658234776\H,-1.0267812248,-1.20 20490681,10.1354287886\C,-0.5316289634,-0.309143262,-14.4536372665\H,-2.3440881468,-1.3889778518,0.807536143\H,-2.0633750336,-1.2454418043,-1.6656426361\0,-0.1649832359,0.0725495239,-2.8836548478\C,0.5206951459 -0.818551164, -3.5779794114\0,1.0578825008, -1.7705238663, -3.1332587403 \H,1.4443420544,1.0914055734,-1.1055111769\H,1.1543476403,0.9464021932 ,1.3546406001\H,-0.8181103471,0.7302296533,-14.5875340148\H,0.50688050 89,-0.4066849473,-14.7574493578\H,-1.1320366627,-0.9074805916,-15.1319 716038\H,-0.4645238813,-1.8044319303,-12.910379545\H,-1.7793458793,-0. 6762260185,-12.741803284\H,-0.1599260186,1.1178477952,-12.109443439\H, 1.1561182259,-0.011233074,-12.278287342\H,0.1746010535,-1.4265068669,-10.4671858528\H,-1.1418882499,-0.2975922464,-10.2985539544\H,0.4820023 057,1.5057622065,-9.7150065294\H,1.7950242556,0.3817344641,-9.88438537 73\\Version=x86-Linux-G98RevA.9\HF=-1549.8095378\RMSD=9.437e-09\RMSF=6 .433e-07\Dipole=0.6864304,0.5190505,-12.6597065\PG=C01 [X(C21H46B19N20 2)]\\@

N-Butyl-4-heptyloxypyridine (7)

1\1\GINC-MONSTER\F0pt\RHF\6-31G(d)\C16H28N101(1+)\PIOTR\10-Apr-2009\0\
\#P HF/6-31G* FOPT GEOM(NOANGLE,NODISTANCE) FCHECK\\N-Butyl-4-heptylox
ypyridinium cation, C1\\1,1\0,-0.4779317225,0.6473135911,-0.6046062704
\C,-0.5829497383,0.6219629894,0.6869122492\C,0.3891925078,0.1297234366
,1.5710664884\C,0.1379665964,0.1708898476,2.9128926094\N,-0.996797342,
0.6646018415,3.4190152364\C,-1.2420655221,0.6441022159,4.8844143598\C,
-1.9592777963,-0.6269818176,5.3312875634\C,-2.2081563108,-0.6323158001
,6.842618898\C,-2.9252230211,-1.8990134168,7.3076456886\H,-2.34322938,
-2.7865543369,7.080376677\H,-3.0874087366,-1.8749461796,8.3787604753\H
,-3.8934736279,-2.00154498,6.8280315937\H,-1.2596637935,-0.5397600738,
7.3657417668\H,-2.7982126984,0.2391287317,7.114994767\H,-2.9046057814,

-0.7125917022,4.8018389404\H,-1.3637523946,-1.4922356673,5.0519109577\ H,-0.2806138454,0.7461549164,5.3673069632\H,-1.8175980702,1.5280497172 ,5.1202487773\C,-1.9413912538,1.1381139687,2.5811934049\C,-1.774766368 9,1.1357685884,1.2357786917\H,-2.5346150037,1.521854196,0.5859652598\H -2.8316173837,1.5210455807,3.0391454148\H,0.8545126063,-0.1942259258, 3.6219816942\H,1.3199518538,-0.2730317892,1.2293362856\C,0.6861081661, 0.1573197111,-1.2950316311\C,0.449798274,0.3491524281,-2.779795684\C,1 .6382869452,-0.1438176892,-3.6101161811\C,1.4197163272,0.0411089286,-5 .1135112354\C,2.6009153603,-0.447975251,-5.9533130356\C,2.3857542868,-0.2645595954,-7.4568509997\C,3.5686600053,-0.7547541218,-8.2906855099\ H,4.4777746472,-0.2175667331,-8.0364139298\H,3.7527591144,-1.812637073 7,-8.1272468315\H,3.385886573,-0.6113279185,-9.3504006384\H,1.48595508 96,-0.7958768691,-7.7588488098\H,2.205435932,0.7869781017,-7.668708398 5\H,3.5019298621,0.0834874628,-5.6520415917\H,2.7819756387,-1.50045816 25,-5.7422346553\H,0.5187196335,-0.4904806205,-5.412432008\H,1.2386744 68,1.0934268774,-5.3222509758\H,2.5383943715,0.3891291211,-3.309894554 7\H,1.8176821959,-1.1964852838,-3.4001443538\H,-0.4521615877,-0.185478 0153,-3.0600354333\H,0.269613374,1.402409822,-2.9696885288\H,1.5469317 582,0.7187681484,-0.9536255922\H,0.8163796123,-0.8882994985,-1.0449638 216\\Version=x86-Linux-G98RevA.9\HF=-751.3301961\RMSD=5.659e-09\RMSF=3 .339e-06\Dipole=-1.0113661,0.6234517,4.2700995\PG=C01 [X(C16H28N101)]

6. References

1. B. Ringstrand, A. Balinski, A. Franken, P. Kaszynski *Inorg. Chem.* 2005, **44**, 9561-9566.

2. P. Kaszynski, J. Huang, G. S. Jenkins, K. A. Bairamov, D. Lipiak *Mol. Cryst. Liq. Cryst.* 1995, **260**, 315-331.

3. The original synthesis and the solid-state structure of **11** is reported in Carr, M. Franken, A.; Kaszynski, P.; Kennedy, J. D. *Acta Crystallograph. B*, submitted.

4. Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.