Supporting Information for the submission to the Journal of Materials Chemistry:

Syntheses, Structures, Two-Photon Absorption Cross-Sections and Computed Second Hyperpolarisabilities of Quadrupolar A- π -A Systems Containing *E*-Dimesitylborylethenyl Acceptors

Christopher D. Entwistle,^a Jonathan C. Collings,^a Andreas Steffen,^a Lars-Olof Pålsson,^a Andrew Beeby,^a David Albesa-Jové,^a Jacquelyn M. Burke,^a Andrei S. Batsanov,^a Judith A. K. Howard,^a Jackie A. Mosely,^a Suk-Yue Poon,^b Wai-Yeung Wong,^b* Fatima Ibersiene,^{c\$} Sofiane Fathallah,^c Abdou Boucekkine,^c* Jean-François Halet,^c* and Todd B. Marder^a*

 ^a Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK. E-mail: todd.marder@durham.ac.uk
^b Department of Chemistry and Centre for Advanced Luminescent Materials, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P.R. China. E-mail: rwywong@hkbu.edu.hk
^c Laboratoire des Sciences Chimiques de Rennes, UMR 6226 CNRS -Université de Rennes 1, Avenue du Général Leclerc, F-35042 Rennes cedex, France.

E-mail: abdou.boucekkine@univ-rennes1.fr, halet@univ-rennes1.fr

^{\$} On leave from the Laboratoire de Thermodynamique et de Modélisation Moléculaire, Université des Sciences et de la Technologie Houari Boumediene, BP32, El Alia 16111 Bab Ezzouar, Alger, Algeria.

Fig. S1TD-DFT computed absorption spectra of compounds 1j (gas phase, top
left, in toluene, top right) and 1m (gas phase, bottom left, in toluene,
bottom right). (Plot using SWizard program, S.I. Gorelsky,
http://www.sg-chem.net/swizard/)

	composition of the main electronic transitions computed for 1j and 1							
1j (gas phase) ^b	λ (nm)	oscillator strength	transitions ^c					
(496	1.8001	H-0→L+0 (80)					
	417	0.0611	$H-2 \rightarrow L+0$ (87)					
	380	0.0624	$H-8 \rightarrow L+0 (51) H-6 \rightarrow L+0 (38)$					
	318	0.0584	$H-1 \rightarrow L+1 (76)$					
	312	0.0499	$H-3 \rightarrow L+1 (81)$					
1j (in toluene)								
	515	1.9187	$H-0\rightarrow L+0$ (83)					
	413	0.0808	H-2→L+0 (89)					
	377	0.0385	H-8→L+0 (73)					
	316	0.0703	H-1→L+1 (83)					
	310	0.0824	H-3→L+1 (82)					
1m (gas phase)								
(537	2.1827	H-0→L+0 (81)					
	416	0.0184	$H-2 \rightarrow L+0$ (72)					
	416	0.0338	$H-3 \rightarrow L+0 (72)$					
	407	0.0993	$H-1 \rightarrow L+0$ (53)					
	336	0.0992	$H-1 \rightarrow L+1 (84)$					
1m (in toluene)								
	561	2.2836	H-0→L+0 (84)					
	426	0.0398	H-0→L+1 (87)					
	410	0.1628	H-3→L+0 (30) H-1→L+0 (29)					
	336	0.1073	H-1→L+1 (63)					
	331	0.0309	H-2→L+1 (77)					

Table S1TD-DFT PBE0/6-31G* energy (λ , nm), oscillator strength (f) and
composition of the main electronic transitions computed for 1j and 1m.^a

^a Optimized BP86/6-31G* geometries were used.

^b For 1j, a bathochromic shift of 19 nm is observed for the principal band, but all secondary ones show a little hypsochromic shift of ~ 3 nm. ^c Weight of the transition (%).

Absorption and emission spectra of **1j** and **1m** were measured in cyclohexane, toluene, THF, ethyl acetate and dichloromethane, and the $\lambda_{max}(abs)$ and $\lambda_{max}(em)$ values obtained in cyclohexane are notably blue-shifted compared to those measured in all other solvents (Table S2). There is no direct correlation between $\lambda_{max}(abs \text{ or } em)$ and the solvent dielectric constant, and the shifts are most likely related to specific solvent-solute interactions.

Table	S2 :	Absorption	and	emission	spectroscopic	data	for	1j	and	1m	in	different
solven	ts.											

	1j		1m		
Solvent	$\lambda_{max}(abs) (nm)$	$\lambda_{max}(em)$ (nm)	$\lambda_{max}(abs) (nm)$	$\lambda_{max}(em)$ (nm)	
Cyclohexane	444	491	456	518	
Toluene	449	506	469	537	
Chloroform	448	505	464	540	
Ethyl Acetate	448	503	464	535	
THF	448	506	464	540	
CH ₂ Cl ₂	448	507	464	542	