Electronic Supplementary Information for:

Conductivity of ionic liquid-derived polymers with internal gold nanoparticle conduits

Sungwon Lee ${ }^{1}$, Matthew D. Cummins ${ }^{2}$, Gerold A. Willing ${ }^{2}$, and Millicent A. Firestone ${ }^{1}$
${ }^{1}$ Materials Science Divisions, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, ${ }^{2}$ Department of Chemical Engineering, University of Louisville, Louisville, KY

Figure 1S. X-ray scattering data collected on a photopolymerized binary mixture of $\left[\mathrm{C}_{10} \mathrm{VIm}^{+}\right][\mathrm{Cl}]$ with an aqueous solution of $15 \%(\mathrm{w} / \mathrm{w}) \mathrm{AuCl}_{4}{ }^{-}\left(\mathrm{Au}^{3+}\right.$ content was 0.58 μ moles), (A) Azimuthally integrated 1-D. (B) 2-D pattern collected with the cylindrically shaped sample oriented with the long axis perpendicular to incident beam.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2009

Table 1S. Fit parameters determined for EIS data in Figure 3B to the equivalent circuit represented in Figure 3A.

$\left[\mathrm{Au}^{3+}\right]$ μ moles	R (\% error)	C 1 (\% error)	CPE -T (\% error)	CPE-P (\% error)
0	$7.99 \times 10^{6}(3.6)$	$9.30 \times 10^{-12}(3.4)$	$1.06 \times 10^{-8}(15.5)$	$0.59(2.9)$
0.175 ± 0.045	$7.18 \times 10^{6}(3.8)$	$9.52 \times 10^{-12}(3.5)$	$8.10 \times 10^{-9}(13.6)$	$0.60(2.7)$
0.60 ± 0.050	$4.96 \times 10^{5}(4.9)$	$1.13 \times 10^{-11}(5.6)$	$3.94 \times 10^{-8}(10.5)$	$0.52(3.2)$
1.58 ± 0.065	$8.23 \times 10^{4}(3.8)$	$9.69 \times 10^{-12}(5.2)$	$3.99 \times 10^{-8}(9.3)$	$0.61(2.3)$

Figure 2S. The equivalent circuit used in analysis of EIS data presented in Figure 6.

Table 2S. Fit parameters determined for EIS data in Figure 6 to the equivalent circuit represented in Figure 2S.

$\left[\mathrm{Au}^{3+}\right]$ μ moles	R 1 (\% error)	C 1 (\% error)	CPE-T (\% error)	CPE-P (\% error)	R 2 (\%error)
1.58 ± 0.065	1.80×10^{6}	4.84×10^{-12}	2.48×10^{-8}	0.71	5.37×10^{7} (0.6)
(1.3)	(1.3)	(0.6)	(1.3)		

