## **Supporting Information**

for

# **π**-Conjugated Oligothiophene-anthracene Co-oligomers: Synthesis, Physical Properties, and Self-assembly

Jing Luo, Hemi Qu, Jun Yin, Xiaojie Zhang, Kuo-Wei Huang, Chunyan Chi\*

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543,

Email: chmcc@nus.edu.sg

| Table of Contents                                                                                 | Page  |
|---------------------------------------------------------------------------------------------------|-------|
| <sup>1</sup> H NMR, <sup>13</sup> C NMR and MALDI-TOF mass spectra of $T_1A$                      | 2-4   |
| <sup>1</sup> H NMR, <sup>13</sup> C NMR and MALDI-TOF mass spectra of $T_2A$                      | 5-7   |
| <sup>1</sup> H NMR, <sup>13</sup> C NMR, MALDI-TOF mass and HPLC spectra of <b>T<sub>3</sub>A</b> | 8-11  |
| Calculated absorption spectra by TD-DFT simulation                                                | 12-15 |
| Morphology studies of thin films on substrates                                                    | 16    |
| Single crystal data of T <sub>1</sub> A                                                           | 17-23 |
| Single crystal data of <b>T</b> <sub>2</sub> <b>A</b>                                             | 24-31 |

Figure S1. <sup>1</sup>H NMR spectrum of  $T_1A$ 



Supplementary Material (ESI) for *Journal of Materials Chemistry* This journal is © the Royal Society of Chemistry 2009

Figure S2. <sup>13</sup>C NMR spectrum of  $T_1A$ 



Figure S3. MALDI-TOF mass spectrum of  $T_1A$ 



Figure S4. <sup>1</sup>H NMR spectrum of  $T_2A$ 



Figure S5. <sup>13</sup>C NMR spectrum of  $T_2A$ 



Figure S6. MALDI-TOF mass spectrum of  $T_2A$ 



Figure S7. <sup>1</sup>H NMR spectrum of  $T_3A$ 



Figure S8. <sup>13</sup>C NMR spectrum of  $T_3A$ 



Figure S9. MALDI-TOF mass spectrum of T<sub>3</sub>A



The peak at 809.810 should be assigned to  $[T_3A-C_{12}H_{25}-C_4H_2S]^+$  fragment. The molecular structure and purity of  $T_3A$  can be confirmed by its <sup>1</sup>H NMR in Figure S7 and elemental analysis data in experimental section. In addition, as shown in Figure S10 below, HPLC elution curve for this compound exhibited a narrow peak, which further indicated its purity level above 99%.

Figure S10. High performance liquid chromatograms (HPLC) of T<sub>3</sub>A (UV detection at 360 nm) using hexane



#### Calculated absorption spectra by TD-DFT simulations

Time-dependent DFT (TD-DFT) calculations have been performed at the B3LYP/6-31G\*\* level of theory,<sup>1-5</sup> as implemented in the *Gaussian 03* (G03) program package.<sup>6</sup> The geometries of  $T_1A$ ,  $T_2A$ , and  $T_3A$  were first fully optimized in gas phase using the default convergence criteria without any constraints and confirmed by frequency calculations. UV-Vis absorption spectra were generated assuming an average UV-vis width of 3000 cm<sup>-1</sup> at half-height using the SWizard program.<sup>7</sup>

|                  | calcd. (nm) | exp. (nm) | f      | composition          |
|------------------|-------------|-----------|--------|----------------------|
| T <sub>1</sub> A | 482.8       | 423       | 0.7464 | HOMO->LUMO (82%)     |
|                  | 349.6       | 330       | 0.1982 | HOMO-2->LUMO (62%)   |
|                  |             |           |        | HOMO->LUMO+2 (23%)   |
|                  | 284.5       |           | 0.4821 | HOMO-1->LUMO+1 (73%) |
|                  |             |           |        | HOMO-5->LUMO (14%)   |
| $T_2A$           | 536.5       | 441       | 1.3946 | HOMO->LUMO (85%)     |
|                  | 390.9       | 353       | 0.0980 | HOMO-2->LUMO (48%)   |
|                  |             |           |        | HOMO->LUMO+2 (32%)   |
|                  | 323.8       |           | 0.1476 | HOMO-2->LUMO+2 (92%) |
| T <sub>3</sub> A | 573.3       | 440       | 2.0620 | HOMO->LUMO (87%)     |
|                  | 424.5       | 400       | 0.0248 | HOMO-1->LUMO+1 (34%) |
|                  |             |           |        | HOMO->LUMO+2 (30%)   |
|                  |             |           |        | HOMO-2->LUMO (28%)   |
|                  | 407.7       | 384       | 1.1503 | HOMO-1->LUMO+1 (53%) |
|                  |             |           |        | HOMO->LUMO+2 (12%)   |
|                  |             |           |        | HOMO-2->LUMO (12%)   |
|                  | 357.3       |           | 0.1534 | HOMO-2->LUMO+2 (80%) |

**Table S1.** Summary of Calculated Optical Transitions with Oscillator Strength f > 0.02



Supplementary Material (ESI) for Journal of Materials Chemistry

Figure S11. The UV-vis absorption spectra for  $T_1A$  (black curve),  $T_2A$  (red curve) and  $T_3A$  (blue curve) from TD-DFT calculations.

The TD-DFT calculations simulate the UV-vis spectra of  $T_1A$  and  $T_2A$  quite well with systematic red-shifted and slightly larger peak-peak separations. For  $T_3A$ , the experimental spectrum displays three closely overlapped bands, but its calculated spectrum shows two obvious absorption bands at 408 and 573 nm with a small band at 424 nm buried in that of the 408 nm one (see figure S11). We rationalize that this may be due to smaller experimental peak-peak separations and wider bandwidths. Nevertheless, no charge transfer band was obtained from the TD-DFT calculations. This is not surprised because both the anthrancene and oligothiophene groups are electron-donating. The calculated HOMO and LUMO profiles were shown in figure S12 and the absorption bands of  $T_3A$  can be correlated to the electronic state transitions (Table S1).



Figure S12. The HOMO and LUMO profiles for  $T_3A$  based on TD-DFT calculations.

#### **References:**

- 1. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 2. M. W. Wong, Chem. Phys. Lett., 1996, 256, 391-399.
- 3. R. Ditchfie, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724-728.
- 4. W. J. Hehre, R. Ditchfie and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261.
- 5. P. C. Harihara and J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213-222.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. M. Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K.

Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Wallingford, CT, 2004.

7. S. I. Gorelsky, SWizard program, <u>http://www.sg-chem.net/</u>, 2009.

#### Morphology studies of thin films on substrates

The morphology of these materials was preliminarily studied by atomic force microscope (AFM) on octadecyltrichlorosilane (OTS) modified SiO<sub>2</sub> surface on silicon wafers. The AFM images were recorded in the tapping mode using digital instruments (Veeco metrocogy group). For experiments performed under silicon probes with resonance frequency of 300 kHz and force constant k of 40 N/m were typically used. Scan sizes of collected images corresponds to 5  $\mu$ m. Images were processed and analyzed using NanoScope *5.30* software (Veeco). The thin films were prepared by spin coating techniques at 2000 rpm from 0.2 mg/ml chloroform solution by using Spin 150 instrument. The films formed by spin-coating from chloroform solutions disclosed homogeneous nanoparticles around 50 nm in diameter and 2 - 4 nm in height for all compounds (see Figure S13). Further studies on the morphology control by using other modified substrates and by choice of different solvents, temperatures and coating methods are undergoing in our lab.



Figure S13. AFM images of  $T_1A$  to  $T_3A$  on OTS-modified silica substrate.

## Crystal data of T<sub>1</sub>A

.Table 1. Crystal data and structure refinement for  $T_1A$ .

| Identification code                     | $T_1A$                                      |                         |
|-----------------------------------------|---------------------------------------------|-------------------------|
| Empirical formula                       | C50 H66 S2                                  |                         |
| Formula weight                          | 731.15                                      |                         |
| Temperature                             | 100(2) K                                    |                         |
| Wavelength                              | 0.71073 Å                                   |                         |
| Crystal system                          | Monoclinic                                  |                         |
| Space group                             | P2(1)/c                                     |                         |
| Unit cell dimensions                    | a = 19.6252(12) Å                           | <i>α</i> = 90°.         |
|                                         | b = 4.5677(3) Å                             | β=101.2370(10)°.        |
|                                         | c = 23.5052(14) Å                           | $\gamma = 90^{\circ}$ . |
| Volume                                  | 2066.7(2) Å <sup>3</sup>                    |                         |
| Z                                       | 2                                           |                         |
| Density (calculated)                    | 1.175 Mg/m <sup>3</sup>                     |                         |
| Absorption coefficient                  | 0.163 mm <sup>-1</sup>                      |                         |
| F(000)                                  | 796                                         |                         |
| Crystal size                            | 0.80 x 0.20 x 0.16 mm <sup>3</sup>          |                         |
| Theta range for data collection         | 1.06 to 27.50°.                             |                         |
| Index ranges                            | -25<=h<=25, -5<=k<=5, -30<=l<=30            |                         |
| Reflections collected                   | 25113                                       |                         |
| Independent reflections                 | 4723 [R(int) = 0.0457]                      |                         |
| Completeness to theta = $27.50^{\circ}$ | 100.0 %                                     |                         |
| Absorption correction                   | Sadabs, (Sheldrick 2001)                    |                         |
| Max. and min. transmission              | 0.9745 and 0.8809                           |                         |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup> |                         |
| Data / restraints / parameters          | 4723 / 0 / 236                              |                         |
| Goodness-of-fit on F <sup>2</sup>       | 1.062                                       |                         |
| Final R indices [I>2sigma(I)]           | R1 = 0.0505, wR2 = 0.1278                   |                         |
| R indices (all data)                    | R1 = 0.0538, $wR2 = 0.1305$                 |                         |
| Largest diff. peak and hole             | 0.766 and -0.293 e.Å <sup>-3</sup>          |                         |
|                                         |                                             |                         |

|       | X       | У        | Z       | U(eq) |
|-------|---------|----------|---------|-------|
| S(1)  | 1649(1) | -391(1)  | 2229(1) | 18(1) |
| C(1)  | 355(1)  | 6869(3)  | -330(1) | 16(1) |
| C(2)  | 733(1)  | 8842(3)  | -625(1) | 19(1) |
| C(3)  | 1413(1) | 9488(4)  | -413(1) | 21(1) |
| C(4)  | 1766(1) | 8213(4)  | 113(1)  | 21(1) |
| C(5)  | 1421(1) | 6392(3)  | 417(1)  | 19(1) |
| C(6)  | 707(1)  | 5645(3)  | 213(1)  | 16(1) |
| C(7)  | 351(1)  | 3815(3)  | 541(1)  | 16(1) |
| C(8)  | 734(1)  | 2588(3)  | 1098(1) | 17(1) |
| C(9)  | 567(1)  | 3023(3)  | 1611(1) | 18(1) |
| C(10) | 925(1)  | 1852(3)  | 2163(1) | 16(1) |
| C(11) | 753(1)  | 2257(3)  | 2694(1) | 17(1) |
| C(12) | 1199(1) | 761(3)   | 3150(1) | 17(1) |
| C(13) | 1713(1) | -766(3)  | 2968(1) | 15(1) |
| C(14) | 2284(1) | -2564(3) | 3323(1) | 17(1) |
| C(15) | 2698(1) | -829(3)  | 3832(1) | 17(1) |
| C(16) | 3219(1) | -2684(3) | 4245(1) | 16(1) |
| C(17) | 3620(1) | -921(3)  | 4752(1) | 17(1) |
| C(18) | 4111(1) | -2786(3) | 5190(1) | 16(1) |
| C(19) | 4515(1) | -1021(3) | 5697(1) | 18(1) |
| C(20) | 4985(1) | -2900(3) | 6148(1) | 17(1) |
| C(21) | 5389(1) | -1147(3) | 6654(1) | 18(1) |
| C(22) | 5843(1) | -3044(3) | 7113(1) | 19(1) |
| C(23) | 6223(1) | -1327(4) | 7635(1) | 20(1) |
| C(24) | 6652(1) | -3241(4) | 8101(1) | 22(1) |
| C(25) | 6977(1) | -1537(4) | 8644(1) | 24(1) |

Table 2. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for T<sub>1</sub>A. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| S(1)-C(13)       | 1.7246(14) |  |
|------------------|------------|--|
| S(1)-C(10)       | 1.7333(14) |  |
| C(1)-C(7)#1      | 1.4121(19) |  |
| C(1)-C(2)        | 1.430(2)   |  |
| C(1)-C(6)        | 1.4409(18) |  |
| C(2)-C(3)        | 1.362(2)   |  |
| C(3)-C(4)        | 1.420(2)   |  |
| C(4)-C(5)        | 1.360(2)   |  |
| C(5)-C(6)        | 1.4309(19) |  |
| C(6)-C(7)        | 1.410(2)   |  |
| C(7)-C(1)#1      | 1.4121(19) |  |
| C(7)-C(8)        | 1.4874(18) |  |
| C(8)-C(9)        | 1.324(2)   |  |
| C(9)-C(10)       | 1.4525(18) |  |
| C(10)-C(11)      | 1.3674(19) |  |
| C(11)-C(12)      | 1.4201(18) |  |
| C(12)-C(13)      | 1.361(2)   |  |
| C(13)-C(14)      | 1.5033(18) |  |
| C(14)-C(15)      | 1.5309(18) |  |
| C(15)-C(16)      | 1.5231(18) |  |
| C(16)-C(17)      | 1.5238(18) |  |
| C(17)-C(18)      | 1.5261(18) |  |
| C(18)-C(19)      | 1.5260(18) |  |
| C(19)-C(20)      | 1.5269(18) |  |
| C(20)-C(21)      | 1.5226(18) |  |
| C(21)-C(22)      | 1.5269(19) |  |
| C(22)-C(23)      | 1.5231(19) |  |
| C(23)-C(24)      | 1.5221(19) |  |
| C(24)-C(25)      | 1.525(2)   |  |
|                  |            |  |
| C(13)-S(1)-C(10) | 92.72(7)   |  |
| C(7)#1-C(1)-C(2) | 122.41(13) |  |
| C(7)#1-C(1)-C(6) | 119.56(13) |  |
| C(2)-C(1)-C(6)   | 117.99(13) |  |

Table 3. Bond lengths [Å] and angles [°] for  $T_1A$ .

| C(3)-C(2)-C(1)    | 121.60(13) |
|-------------------|------------|
| C(2)-C(3)-C(4)    | 120.35(14) |
| C(5)-C(4)-C(3)    | 120.09(13) |
| C(4)-C(5)-C(6)    | 121.68(13) |
| C(7)-C(6)-C(5)    | 121.06(13) |
| C(7)-C(6)-C(1)    | 120.68(13) |
| C(5)-C(6)-C(1)    | 118.24(13) |
| C(6)-C(7)-C(1)#1  | 119.75(12) |
| C(6)-C(7)-C(8)    | 118.98(12) |
| C(1)#1-C(7)-C(8)  | 121.25(13) |
| C(9)-C(8)-C(7)    | 124.92(13) |
| C(8)-C(9)-C(10)   | 126.56(13) |
| C(11)-C(10)-C(9)  | 127.09(13) |
| C(11)-C(10)-S(1)  | 109.99(10) |
| C(9)-C(10)-S(1)   | 122.91(11) |
| C(10)-C(11)-C(12) | 113.41(13) |
| C(13)-C(12)-C(11) | 113.32(12) |
| C(12)-C(13)-C(14) | 128.59(13) |
| C(12)-C(13)-S(1)  | 110.56(10) |
| C(14)-C(13)-S(1)  | 120.84(11) |
| C(13)-C(14)-C(15) | 112.03(12) |
| C(16)-C(15)-C(14) | 113.45(12) |
| C(15)-C(16)-C(17) | 112.59(12) |
| C(16)-C(17)-C(18) | 113.27(12) |
| C(19)-C(18)-C(17) | 113.31(12) |
| C(18)-C(19)-C(20) | 113.37(12) |
| C(21)-C(20)-C(19) | 113.53(12) |
| C(20)-C(21)-C(22) | 113.36(12) |
| C(23)-C(22)-C(21) | 113.77(13) |
| C(24)-C(23)-C(22) | 113.58(13) |
| C(23)-C(24)-C(25) | 113.10(13) |
|                   |            |

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| S(1)  | 16(1)           | 23(1)           | 12(1)           | 2(1)            | 0(1)            | 5(1)            |
| C(1)  | 18(1)           | 17(1)           | 12(1)           | -1(1)           | 1(1)            | 4(1)            |
| C(2)  | 21(1)           | 21(1)           | 13(1)           | 0(1)            | 1(1)            | 0(1)            |
| C(3)  | 22(1)           | 24(1)           | 18(1)           | 0(1)            | 4(1)            | -3(1)           |
| C(4)  | 16(1)           | 28(1)           | 18(1)           | -3(1)           | 0(1)            | 0(1)            |
| C(5)  | 17(1)           | 25(1)           | 14(1)           | -2(1)           | -1(1)           | 3(1)            |
| C(6)  | 16(1)           | 18(1)           | 12(1)           | -1(1)           | 1(1)            | 4(1)            |
| C(7)  | 18(1)           | 17(1)           | 12(1)           | -1(1)           | 1(1)            | 4(1)            |
| C(8)  | 14(1)           | 18(1)           | 18(1)           | 1(1)            | -2(1)           | 4(1)            |
| C(9)  | 13(1)           | 21(1)           | 17(1)           | 2(1)            | -2(1)           | 2(1)            |
| C(10) | 13(1)           | 17(1)           | 16(1)           | 2(1)            | -2(1)           | 1(1)            |
| C(11) | 13(1)           | 21(1)           | 16(1)           | 1(1)            | -1(1)           | 1(1)            |
| C(12) | 16(1)           | 22(1)           | 12(1)           | 1(1)            | -1(1)           | -1(1)           |
| C(13) | 15(1)           | 17(1)           | 11(1)           | 1(1)            | -3(1)           | -2(1)           |
| C(14) | 18(1)           | 17(1)           | 14(1)           | 1(1)            | -4(1)           | 2(1)            |
| C(15) | 16(1)           | 16(1)           | 17(1)           | 0(1)            | -4(1)           | 1(1)            |
| C(16) | 14(1)           | 17(1)           | 14(1)           | 0(1)            | -2(1)           | 2(1)            |
| C(17) | 16(1)           | 16(1)           | 16(1)           | 0(1)            | -4(1)           | 1(1)            |
| C(18) | 15(1)           | 17(1)           | 14(1)           | 1(1)            | -2(1)           | 1(1)            |
| C(19) | 16(1)           | 19(1)           | 15(1)           | -1(1)           | -3(1)           | 2(1)            |
| C(20) | 15(1)           | 20(1)           | 14(1)           | -1(1)           | -2(1)           | 1(1)            |
| C(21) | 18(1)           | 19(1)           | 15(1)           | -1(1)           | -3(1)           | 1(1)            |
| C(22) | 18(1)           | 22(1)           | 14(1)           | -1(1)           | -4(1)           | 1(1)            |
| C(23) | 18(1)           | 23(1)           | 16(1)           | -2(1)           | -4(1)           | 0(1)            |
| C(24) | 21(1)           | 26(1)           | 17(1)           | -1(1)           | -4(1)           | 3(1)            |
| C(25) | 19(1)           | 37(1)           | 15(1)           | -2(1)           | -3(1)           | -1(1)           |

Table 4. Anisotropic displacement parameters  $(Å^2 x \ 10^3)$  for  $T_1A$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$ 

|        | х    | у     | Z    | U(eq) |
|--------|------|-------|------|-------|
|        |      |       |      |       |
| H(2)   | 505  | 9723  | -977 | 22    |
| H(3)   | 1653 | 10799 | -619 | 26    |
| H(4)   | 2243 | 8634  | 253  | 25    |
| H(5)   | 1660 | 5594  | 774  | 23    |
| H(8)   | 1129 | 1402  | 1085 | 21    |
| H(9)   | 174  | 4223  | 1618 | 21    |
| H(11)  | 372  | 3425  | 2752 | 20    |
| H(12)  | 1145 | 821   | 3542 | 21    |
| H(14A) | 2602 | -3242 | 3071 | 21    |
| H(14B) | 2080 | -4315 | 3473 | 21    |
| H(15A) | 2948 | 777   | 3679 | 21    |
| H(15B) | 2369 | 69    | 4052 | 21    |
| H(16A) | 3552 | -3565 | 4027 | 19    |
| H(16B) | 2970 | -4300 | 4397 | 19    |
| H(17A) | 3285 | 70    | 4952 | 20    |
| H(17B) | 3893 | 612   | 4599 | 20    |
| H(18A) | 3838 | -4315 | 5343 | 19    |
| H(18B) | 4445 | -3783 | 4989 | 19    |
| H(19A) | 4181 | 37    | 5888 | 21    |
| H(19B) | 4802 | 458   | 5545 | 21    |
| H(20A) | 4698 | -4380 | 6299 | 20    |
| H(20B) | 5319 | -3958 | 5956 | 20    |
| H(21A) | 5056 | -44   | 6839 | 22    |
| H(21B) | 5687 | 293   | 6504 | 22    |
| H(22A) | 5547 | -4544 | 7249 | 22    |
| H(22B) | 6190 | -4077 | 6931 | 22    |
| H(23A) | 6534 | 117   | 7501 | 24    |
| H(23B) | 5878 | -228  | 7806 | 24    |
| H(24A) | 7025 | -4198 | 7941 | 27    |
| H(24B) | 6350 | -4800 | 8210 | 27    |

Table 5. Hydrogen coordinates (  $x\;10^4$  ) and isotropic displacement parameters (Å  $^2x\;10\;^3$  ) for  $T_1A.$ 

| H(25A) | 7305 | -93   | 8546 | 36 |
|--------|------|-------|------|----|
| H(25B) | 7223 | -2892 | 8937 | 36 |
| H(25C) | 6611 | -529  | 8799 | 36 |

## Crystal data of T<sub>2</sub>A.

Table 6. Crystal data and structure refinement for  $T_2A$ .

| Identification code                     | $T_2A$                                      |                         |
|-----------------------------------------|---------------------------------------------|-------------------------|
| Empirical formula                       | C58 H70 S4                                  |                         |
| Formula weight                          | 895.38                                      |                         |
| Temperature                             | 100(2) K                                    |                         |
| Wavelength                              | 0.71073 Å                                   |                         |
| Crystal system                          | Monoclinic                                  |                         |
| Space group                             | P2(1)/c                                     |                         |
| Unit cell dimensions                    | a = 5.5798(3) Å                             | α= 90°.                 |
|                                         | b = 7.4484(4)  Å                            | β=92.5160(10)°.         |
|                                         | c = 58.222(3)  Å                            | $\gamma = 90^{\circ}$ . |
| Volume                                  | 2417.4(2) Å <sup>3</sup>                    |                         |
| Z                                       | 2                                           |                         |
| Density (calculated)                    | 1.230 Mg/m <sup>3</sup>                     |                         |
| Absorption coefficient                  | 0.235 mm <sup>-1</sup>                      |                         |
| F(000)                                  | 964                                         |                         |
| Crystal size                            | 0.38 x 0.32 x 0.06 mm <sup>3</sup>          |                         |
| Theta range for data collection         | 1.40 to 27.50°.                             |                         |
| Index ranges                            | -7<=h<=7, -9<=k<=9, -75<=l<=75              |                         |
| Reflections collected                   | 30296                                       |                         |
| Independent reflections                 | 5551 [R(int) = 0.0425]                      |                         |
| Completeness to theta = $27.50^{\circ}$ | 100.0 %                                     |                         |
| Absorption correction                   | Semi-empirical from equivalen               | ts                      |
| Max. and min. transmission              | 0.9860 and 0.9161                           |                         |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup> |                         |
| Data / restraints / parameters          | 5551 / 0 / 281                              |                         |
| Goodness-of-fit on F <sup>2</sup>       | 1.210                                       |                         |
| Final R indices [I>2sigma(I)]           | R1 = 0.0607, WR2 = 0.1359                   |                         |
| R indices (all data)                    | R1 = 0.0660, wR2 = 0.1383                   |                         |
| Largest diff. peak and hole             | 0.641 and -0.401 e.Å <sup>-3</sup>          |                         |

|          | Х        | у         | Z       | U(eq) |
|----------|----------|-----------|---------|-------|
| <u> </u> | 5501/1)  | 2505(1)   | 674(1)  | 16(1) |
| S(1)     | 2109(1)  | -3393(1)  | 0/4(1)  | 10(1) |
| S(2)     | 3198(1)  | 180(1)    | (55(1)) | 19(1) |
| C(1)     | 3576(4)  | -53/3(3)  | 655(1)  | 1/(1) |
| C(2)     | 1816(5)  | -5160(3)  | 810(1)  | 23(1) |
| C(3)     | 2075(4)  | -3585(3)  | 945(1)  | 20(1) |
| C(4)     | 4039(4)  | -2588(3)  | 894(1)  | 15(1) |
| C(5)     | 4873(4)  | -907(3)   | 993(1)  | 14(1) |
| C(6)     | 6921(4)  | 39(3)     | 956(1)  | 22(1) |
| C(7)     | 7118(4)  | 1636(3)   | 1089(1) | 21(1) |
| C(8)     | 5253(4)  | 1913(3)   | 1227(1) | 15(1) |
| C(9)     | 3734(4)  | -6815(3)  | 489(1)  | 22(1) |
| C(10)    | 5128(4)  | -6947(3)  | 314(1)  | 19(1) |
| C(11)    | 5054(4)  | -8500(3)  | 152(1)  | 16(1) |
| C(12)    | 3303(4)  | -8589(3)  | -29(1)  | 16(1) |
| C(13)    | 3250(4)  | -10112(3) | -182(1) | 15(1) |
| C(14)    | 1423(4)  | -10168(3) | -362(1) | 19(1) |
| C(15)    | -247(4)  | -8851(3)  | -389(1) | 22(1) |
| C(16)    | -190(4)  | -7349(3)  | -240(1) | 21(1) |
| C(17)    | 1528(4)  | -7226(3)  | -66(1)  | 19(1) |
| C(18)    | 4836(4)  | 3409(3)   | 1393(1) | 18(1) |
| C(19)    | 6742(4)  | 4885(3)   | 1391(1) | 17(1) |
| C(20)    | 6304(4)  | 6350(3)   | 1567(1) | 18(1) |
| C(21)    | 8161(4)  | 7851(3)   | 1567(1) | 18(1) |
| C(22)    | 7786(4)  | 9263(3)   | 1752(1) | 19(1) |
| C(23)    | 9633(4)  | 10776(3)  | 1755(1) | 18(1) |
| C(24)    | 9262(4)  | 12167(3)  | 1943(1) | 19(1) |
| C(25)    | 11101(4) | 13685(3)  | 1946(1) | 19(1) |
| C(26)    | 10725(4) | 15074(3)  | 2134(1) | 19(1) |
| C(27)    | 12531(4) | 16608(3)  | 2138(1) | 18(1) |
| C(28)    | 12107(4) | 17990(3)  | 2324(1) | 21(1) |
| C(29)    | 13924(5) | 19511(4)  | 2332(1) | 28(1) |

Table 7. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for T<sub>2</sub>A. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| S(1)-C(1)     | 1.733(2) |
|---------------|----------|
| S(1)-C(4)     | 1.742(2) |
| S(2)-C(8)     | 1.731(2) |
| S(2)-C(5)     | 1.739(2) |
| C(1)-C(2)     | 1.371(3) |
| C(1)-C(9)     | 1.453(3) |
| C(2)-C(3)     | 1.417(3) |
| C(3)-C(4)     | 1.368(3) |
| C(4)-C(5)     | 1.447(3) |
| C(5)-C(6)     | 1.367(3) |
| C(6)-C(7)     | 1.421(3) |
| C(7)-C(8)     | 1.356(3) |
| C(8)-C(18)    | 1.500(3) |
| C(9)-C(10)    | 1.313(3) |
| C(10)-C(11)   | 1.490(3) |
| C(11)-C(13)#1 | 1.407(3) |
| C(11)-C(12)   | 1.407(3) |
| C(12)-C(17)   | 1.428(3) |
| C(12)-C(13)   | 1.441(3) |
| C(13)-C(11)#1 | 1.407(3) |
| C(13)-C(14)   | 1.433(3) |
| C(14)-C(15)   | 1.357(3) |
| C(15)-C(16)   | 1.414(3) |
| C(16)-C(17)   | 1.366(3) |
| C(18)-C(19)   | 1.530(3) |
| C(19)-C(20)   | 1.525(3) |
| C(20)-C(21)   | 1.524(3) |
| C(21)-C(22)   | 1.527(3) |
| C(22)-C(23)   | 1.527(3) |

Table 8. Bond lengths [Å] and angles [°] for  $T_2A$ .

| C(23)-C(24)         | 1.527(3)   |
|---------------------|------------|
| C(24)-C(25)         | 1.526(3)   |
| C(25)-C(26)         | 1.526(3)   |
| C(26)-C(27)         | 1.523(3)   |
| C(27)-C(28)         | 1.523(3)   |
| C(28)-C(29)         | 1.520(3)   |
|                     |            |
| C(1)-S(1)-C(4)      | 92.15(11)  |
| C(8)-S(2)-C(5)      | 92.55(11)  |
| C(2)-C(1)-C(9)      | 126.2(2)   |
| C(2)-C(1)-S(1)      | 110.41(18) |
| C(9)-C(1)-S(1)      | 123.34(18) |
| C(1)-C(2)-C(3)      | 113.8(2)   |
| C(4)-C(3)-C(2)      | 113.0(2)   |
| C(3)-C(4)-C(5)      | 129.0(2)   |
| C(3)-C(4)-S(1)      | 110.70(17) |
| C(5)-C(4)-S(1)      | 120.30(17) |
| C(6)-C(5)-C(4)      | 129.8(2)   |
| C(6)-C(5)-S(2)      | 110.10(17) |
| C(4)-C(5)-S(2)      | 120.04(17) |
| C(5)-C(6)-C(7)      | 113.1(2)   |
| C(8)-C(7)-C(6)      | 114.0(2)   |
| C(7)-C(8)-C(18)     | 129.7(2)   |
| C(7)-C(8)-S(2)      | 110.32(18) |
| C(18)-C(8)-S(2)     | 120.00(17) |
| C(10)-C(9)-C(1)     | 129.0(2)   |
| C(9)-C(10)-C(11)    | 123.2(2)   |
| C(13)#1-C(11)-C(12) | 119.9(2)   |
| C(13)#1-C(11)-C(10) | 119.5(2)   |
| C(12)-C(11)-C(10)   | 120.6(2)   |
| C(11)-C(12)-C(17)   | 122.3(2)   |
| C(11)-C(12)-C(13)   | 119.6(2)   |
| C(17)-C(12)-C(13)   | 118.1(2)   |
| C(11)#1-C(13)-C(14) | 121.5(2)   |
| C(11)#1-C(13)-C(12) | 120.5(2)   |
| C(14)-C(13)-C(12)   | 118.1(2)   |

| C(15)-C(14)-C(13) | 121.6(2)   |
|-------------------|------------|
| C(14)-C(15)-C(16) | 120.4(2)   |
| C(17)-C(16)-C(15) | 120.2(2)   |
| C(16)-C(17)-C(12) | 121.6(2)   |
| C(8)-C(18)-C(19)  | 113.62(19) |
| C(20)-C(19)-C(18) | 112.14(19) |
| C(21)-C(20)-C(19) | 113.40(19) |
| C(20)-C(21)-C(22) | 113.08(19) |
| C(23)-C(22)-C(21) | 113.69(19) |
| C(22)-C(23)-C(24) | 113.27(19) |
| C(25)-C(24)-C(23) | 113.6(2)   |
| C(26)-C(25)-C(24) | 113.5(2)   |
| C(27)-C(26)-C(25) | 114.0(2)   |
| C(28)-C(27)-C(26) | 113.2(2)   |
| C(29)-C(28)-C(27) | 113.6(2)   |
|                   |            |

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y-2,-z

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| S(1)  | 15(1)           | 16(1)           | 18(1)           | -7(1)           | 2(1)            | -2(1)           |
| S(2)  | 15(1)           | 17(1)           | 24(1)           | -9(1)           | 4(1)            | -3(1)           |
| C(1)  | 21(1)           | 14(1)           | 17(1)           | -3(1)           | 1(1)            | -2(1)           |
| C(2)  | 27(1)           | 20(1)           | 23(1)           | -6(1)           | 7(1)            | -8(1)           |
| C(3)  | 23(1)           | 20(1)           | 18(1)           | -4(1)           | 5(1)            | -1(1)           |
| C(4)  | 16(1)           | 16(1)           | 13(1)           | -4(1)           | 1(1)            | 5(1)            |
| C(5)  | 17(1)           | 15(1)           | 12(1)           | -4(1)           | 0(1)            | 3(1)            |
| C(6)  | 23(1)           | 22(1)           | 21(1)           | -4(1)           | 7(1)            | 0(1)            |
| C(7)  | 23(1)           | 19(1)           | 21(1)           | -3(1)           | 5(1)            | -6(1)           |
| C(8)  | 17(1)           | 12(1)           | 17(1)           | -1(1)           | -1(1)           | -1(1)           |
| C(9)  | 24(1)           | 15(1)           | 25(1)           | -7(1)           | 3(1)            | -5(1)           |
| C(10) | 22(1)           | 13(1)           | 21(1)           | -5(1)           | 1(1)            | -2(1)           |
| C(11) | 21(1)           | 13(1)           | 14(1)           | -1(1)           | 5(1)            | -3(1)           |
| C(12) | 20(1)           | 14(1)           | 14(1)           | -1(1)           | 4(1)            | -2(1)           |
| C(13) | 19(1)           | 14(1)           | 14(1)           | -1(1)           | 2(1)            | -2(1)           |
| C(14) | 24(1)           | 15(1)           | 18(1)           | -3(1)           | 0(1)            | -2(1)           |
| C(15) | 23(1)           | 20(1)           | 21(1)           | 1(1)            | -5(1)           | -2(1)           |
| C(16) | 23(1)           | 16(1)           | 25(1)           | 1(1)            | 1(1)            | 5(1)            |
| C(17) | 24(1)           | 13(1)           | 19(1)           | -4(1)           | 2(1)            | 2(1)            |
| C(18) | 20(1)           | 17(1)           | 17(1)           | -5(1)           | 3(1)            | -1(1)           |
| C(19) | 19(1)           | 14(1)           | 19(1)           | -2(1)           | 1(1)            | 1(1)            |
| C(20) | 20(1)           | 13(1)           | 20(1)           | -3(1)           | 2(1)            | -1(1)           |
| C(21) | 19(1)           | 13(1)           | 21(1)           | -3(1)           | 0(1)            | -1(1)           |
| C(22) | 21(1)           | 14(1)           | 20(1)           | -3(1)           | 1(1)            | -1(1)           |
| C(23) | 20(1)           | 14(1)           | 20(1)           | -3(1)           | 1(1)            | -1(1)           |
| C(24) | 22(1)           | 15(1)           | 20(1)           | -3(1)           | 2(1)            | -1(1)           |
| C(25) | 21(1)           | 16(1)           | 20(1)           | -3(1)           | 1(1)            | -1(1)           |
| C(26) | 23(1)           | 15(1)           | 19(1)           | -3(1)           | 1(1)            | -2(1)           |
| C(27) | 22(1)           | 15(1)           | 17(1)           | -2(1)           | 0(1)            | -3(1)           |
| C(28) | 24(1)           | 19(1)           | 20(1)           | -5(1)           | 0(1)            | -2(1)           |
| C(29) | 34(1)           | 21(1)           | 29(1)           | -9(1)           | -1(1)           | -7(1)           |

Table 9. Anisotropic displacement parameters  $(Å^2x \ 10^3)$  for  $T_2A$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$ 

| 101 1 <sub>2</sub> A. |      |       |      |       |  |  |
|-----------------------|------|-------|------|-------|--|--|
|                       | Х    | у     | Z    | U(eq) |  |  |
|                       |      |       |      |       |  |  |
| H(2)                  | 541  | -5990 | 825  | 28    |  |  |
| H(3)                  | 997  | -3257 | 1060 | 24    |  |  |
| H(6)                  | 8092 | -333  | 853  | 26    |  |  |

Table 10. Hydrogen coordinates (  $x\;10^4$  ) and isotropic displacement parameters (Å  $^2x\;10\;^3$  ) for T<sub>2</sub>A

|        | Х     | у      | Z    | U(eq) |
|--------|-------|--------|------|-------|
|        |       |        |      |       |
| H(2)   | 541   | -5990  | 825  | 28    |
| H(3)   | 997   | -3257  | 1060 | 24    |
| H(6)   | 8092  | -333   | 853  | 26    |
| H(7)   | 8438  | 2437   | 1083 | 25    |
| H(9)   | 2683  | -7800  | 509  | 26    |
| H(10)  | 6238  | -6007  | 289  | 22    |
| H(14A) | 1380  | -11151 | -466 | 23    |
| H(15A) | -1463 | -8939  | -508 | 26    |
| H(16A) | -1350 | -6423  | -261 | 26    |
| H(17A) | 1543  | -6208  | 32   | 23    |
| H(18A) | 4800  | 2903   | 1550 | 21    |
| H(18B) | 3245  | 3949   | 1355 | 21    |
| H(19A) | 8342  | 4346   | 1424 | 21    |
| H(19B) | 6743  | 5426   | 1235 | 21    |
| H(20A) | 4693  | 6872   | 1534 | 21    |
| H(20B) | 6313  | 5804   | 1722 | 21    |
| H(21A) | 8091  | 8443   | 1415 | 22    |
| H(21B) | 9780  | 7323   | 1591 | 22    |
| H(22A) | 6164  | 9788   | 1728 | 22    |
| H(22B) | 7852  | 8668   | 1904 | 22    |
| H(23A) | 9551  | 11384  | 1604 | 22    |
| H(23B) | 11257 | 10252  | 1777 | 22    |
| H(24A) | 7637  | 12688  | 1920 | 23    |
| H(24B) | 9344  | 11557  | 2094 | 23    |
| H(25A) | 12727 | 13165  | 1969 | 23    |
|        |       |        |      |       |

| H(25B) | 11020 | 14296 | 1795 | 23 |
|--------|-------|-------|------|----|
| H(26A) | 9090  | 15580 | 2112 | 23 |
| H(26B) | 10824 | 14464 | 2285 | 23 |
| H(27A) | 14166 | 16108 | 2162 | 21 |
| H(27B) | 12448 | 17214 | 1986 | 21 |
| H(28A) | 10480 | 18503 | 2298 | 25 |
| H(28B) | 12159 | 17378 | 2475 | 25 |
| H(29A) | 15528 | 19026 | 2369 | 42 |
| H(29B) | 13506 | 20379 | 2450 | 42 |
| H(29C) | 13912 | 20109 | 2182 | 42 |
|        |       |       |      |    |