Nano-CaCO₃ as template for preparation of disordered large mesoporous carbon with hierarchical porosities

Chunrong Zhao,^a Weikun Wang,^{*b} Zhongbao Yu,^b Hao Zhang,^b Anbang Wang,^b

and Yusheng Yang^{a,b}

a, Beijing University of Science and Technology, Beijing 100083, China

b, Research Institute of Chemical Defense, Beijing 100191, China

Supporting information

In order to demonstrate the reproducibility of the preparation process of LMC materials with CO₂ inner-activation effect, we provided the full adsorption data of 3 samples for LMC-1 (50:50) and carbon yield data of 3 samples for LMC-X (X=1, 2, 3, 4).

Figure S1, shows the Nitrogen adsorption/desorption isotherms, pore-size distributions (calculated by DFT and BJH method respectively) of LMC-1. Table S1 shows the BET surface area and pore volume (according to N₂ adsorption/desorption isotherms) data of 3 samples for LMC-1. There are no much difference among the Nitrogen adsorption/desorption isotherms, pore size distributions, BET surface area and pore volume of 3 samples for LMC-1, which prove the preparation process of LMC is repeatable.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2009

Figure S1. (a) Nitrogen adsorption/desorption isotherms of LMC-1. Pore-size distributions of LMC-1 (b) calculated by DFT method, (c) calculated by BJH method.

Samples	$S_{BET}/m^2 g^{-1}$	$V_{tot}/cm^3 g^{-1}$
1#	518	0.79
2#	503	0.70
3#	512	0.76

Table S1: Textual parameters of LMC-1(according to N₂ adsorption/desorption isotherms)

The carbon yield data of 3 samples for every LMC material are given in Table S2. The carbon yield of LMC samples are affected by the CO_2 inner-activation effect according to the equation: $CO_2 + C \longrightarrow 2CO$, so the close carbon yield data of 3 samples for LMC-X (X=1,2,3,4) can also prove that the preparation process of LMC is repeatable.

Samples	LMC-1		LMC-2		LMC-3			LMC-4				
The yield	1#	2#	3#	1#	2#	3#	1#	2#	3#	1#	2#	3#
of carbon (%)	53	51	52	48	49	46	42	40	39	24	26	23

 Table S2:
 The carbon yield of LMC samples