Supplementary Information

Transparent and Flexible Thin Films of ZnO-Polystyrene Nanocomposite for UV-Shielding Applications

Yao Tu¹, Li Zhou², Yi Zheng Jin^{1*}, Chao Gao^{2*}, Zhi Zhen Ye¹, Ye Feng Yang¹ and Qing Ling Wang¹

¹ State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China

² Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China

Corresponding authors: <u>vizhengjin@zju.edu.cn</u> (Dr. Yizheng Jin) and <u>chaogao@zju.edu.cn</u> (Prof. Chao Gao)

Experimental details

The UV-Vis spectra of the colloidal ZnO nanocrystals, neat polystyrene, and ZnO-PS nanocomposites were recorded on a UNICO UV2100 UV-Vis spectrometer under absorbance and transmittance modes. Transmission electron microscopy (TEM) observations on the colloidal ZnO nanocrystals were carried out using JEOL JEM-1230 operated at 80 k eV. High-resolution TEM (HRTEM) was performed on a TECNAI G2 F20 transmission electron microscope operated at 200 k eV. Thin sections, *ca.* 80 nm in thickness, from the composite films were prepared by a Reichert-Jung microtome and examined by a TEM (CM200) operated at 160 k eV. X-ray diffraction (XRD) measurement was performed on a Bede D1 system with a CuK α radiation ($\lambda = 1.5406$ Å). The thermal stability of PS and ZnO-PS nanocomposite films was analyzed with Pyris 1 TGA (Perkin-Elmer) apparatus. The analyses were performed by heating at 10 °C/min from room temperature to 600 °C in a N₂ ambience. PL spectra were recorded by a FLS-920 fluorescence spectrometer (Edinburgh Instruments), with a 300 nm line of a Xenon lamp.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2009

Fig. S1. Typical (a) UV-Vis absorption spectrum, (b) PL spectrum and (c) XRD pattern of the PS composite films.