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The Resolution Parameter, Parallelepiped Voxels, and Error Bounds 
 
In order to discuss the scaling and error bounds of the algorithm it is useful to define N as a 
measure of the resolution of the computational grid. Also, N is the length, in voxels, of one 
side of the computational domain so the discussion below assumes the domain is N * N * N = 
N3 voxels in size. The arguments below will also apply to domains having different numbers of 
voxels on each side because these lengths can be set equal to some N scaled by a constant 
factor that is irrelevant to the asymptotic behavior of the scaling and error bounds. 
 
The thickness of material deposited in a single iteration is limited by the Courant–Friedrichs–
Lewy condition [1] to less than the distance across a single voxel. This ensures the proper 
flow of information between voxels during successive growth iterations so that the algorithm 
correctly identifies the nearest surface to each empty voxel. When the voxel shape is cubic 
the maximum thickness per iteration is a third the of the voxel diagonal. However, the 
algorithm is designed to work with voxels having an arbitrary parallelepiped shape as this 
facilitates the representation of a primitive unit cell of a Bravais lattice. In this case, it is 
necessary to limit the deposition per iteration to no more than a third of the minimum diagonal 
distance across the parallelepiped voxel.  
 
Pinch-off may occur anywhere inside the voxel but a voxel's position is represented by its 
center. Here, the assumption is made that the error is due solely to the difference between the 
true pinch-off point and the center of the voxel. Thus, the maximum possible error is 
proportional to the longest diagonal of the voxel. Furthermore, the error bound is made tighter 
by choosing a voxel shape that minimizes the longest diagonal. Also, when the resolution N is 
increased, the length of each voxel becomes smaller and the error bound becomes tighter. It 
is easy to see that the relative error in the deposition thickness at pinch-off scales as N-1. The 
relative volumetric error in the amount of deposited material would be the thickness error 
times the surface area divided by the volume, respectively 1 * N2 / N3 = N-1.  
 
To estimate the size of the bounds on the volumetric error and compare it to the expected 
asymptotic behavior, we used the algorithm to calculate the filling fraction of infilled spheres 
on an fcc lattice. 1000 calculations were performed for each value of N, where N is either 64, 
128, 256, or 512. The voxel at the origin of the sphere in the privative fcc unit cell was 
uniformly spanned with 1000 points (a uniform grid, 10 points in each direction) which served 
as the exact position of the sphere center in each respective run of the algorithm. This has the 
effect of shifting the exact position of the true pinch-off point. Furthermore, the voxels that are 
initially set solid and empty (respectively inside or outside the sphere radius) may differ for 
each run. The filling fraction at pinch-off was calculated for each run of the algorithm and the 
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maximum and the minimum results were plotted (Fig. 1). This forms an empirical estimate of 
the error bounds and also demonstrating the apparent N-1 convergence to the value 0.9641, 
the analytical result for fcc spheres. Although larger deviations might be found at points in 
between the 1000 sampled origin-points, it is likely that the sampling is sufficiently dense to 
capture the majority of the error and its behavior.  
 
Calculating the Distance to a Surface 
 
To calculate the distance from an empty voxel to a surface, the path is followed from the 
voxel, through the previously deposited voxels, to termination on an original surface voxel. 
This distance can be represented by an integer number of steps in the respective directions of 
the vectors which describe the parallelepiped voxel: 
 
d=��d�= �na�a+nb�b+nc�c�  
 
As each of the six possible paths leading from an empty voxel are compared to find the 
shortest distance to a surface, it is possible that two different surface voxels are equidistant 
from the empty voxel. But the algorithm must choose one of these equidistant surfaces as 
being the nearest surface. In our implementation, the shortest equidistant path is that path 
that was probed first, while the order of probing (-a direction, +a, -b, +b, -c, and finally +c) 
remains constant. This can potentially lead to a slight anisotropy in the different directions of 
our computational domain. Furthermore, our implementation conveniently accumulates the 
distance vector, d, at each voxel of the traced out path to the surface. This can cause 
seemingly equidistant paths being unequal due to round off as the d-vector is accumulated. 
Thus, in the above sampling of the 1000 origin-points to estimate the error bounds, points that 
may have appeared degenerate due to the fcc symmetry are in fact distinct. 
 
The origin of the larger error bounds for our improved N4 algorithm vs the straightforward N5 
algorithm lies in the necessary choice between two ideally equidistant surfaces. Examples 
can be contrived where a certain choice prevents subsequently deposited voxels from finding 
the true nearest surface. However, the error cause by this occurrence is a fraction of a voxel 
length. Furthermore, as the deposition proceeds these errors tend to be reduced and even 
eliminated because the distance from these other empty voxels to alternate candidates for a 
nearest surface either become closer to the true nearest distance or they become the true 
nearest distance. The above empirical estimation of the error bounds suggests that the effect 
due to incorrectly identifying the true nearest surface is not significant. 
 
Scaling of the Computation Time 
 
The straightforward brute-force approach to calculate each voxel's nearest surface requires 
calculating the euclidean distance between each empty voxel and each surface site. In a 
three-dimensional computational volume with N voxels per side, N3 voxels in total, the number 
of empty voxels is proportional to the total number of voxels, N3, and the total number of 
surface voxels will be proportional to N2. The complexity for testing N3 empty voxels against 
N2 surface voxels is N3 * N2 = N5, which is the dominant contribution to the computation time. 
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In the presented algorithm the complexity is reduced to N4. Each of the N3 empty voxels are 
tested against a constant number or paths to a potential nearest surface. These tests are only 
performed  when the empty voxel in question is adjacent to the surface, which is only for a 
constant number of growth iterations. However, the path length will be proportional to N, 
giving N * N3 = N4 computational cost. An alternate way to derive this result is that there are 
N2 empty voxels adjacent to the surface which must be tested at each growth iteration. The 
total number of growth iterations, like the path length, is proportional to the linear distance 
across the computational domain which is proportional to N, giving N2 * N * N = N4 complexity.  
 
The above analysis only accounted for the cost of finding the nearest surfaces. An additional 
cost is incurred by checking for a continuous path of empty voxels between the deposition 
source and the growth surface. The "flood-fill" type algorithm will visit each of the N3 empty 
voxels in every growth iteration and the total number of iterations is proportional to N, giving 
N3 * N = N4 complexity. To further improve the computational cost would require 
improvements to both the nearest surface algorithm and continuous path algorithm which 
form the complete algorithm for tracking the evolving surfaces during conformal deposition. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fi
g. 

S1 The scaling of computation time versus the number of voxel 
per axis (black). The scaling approaches the expected N4 
asymptotic behavior (grey), which is plotted with a slope of 4 and 
passes through the data point at 1024 voxels per side. 
 

 
The N4 scaling of the improved algorithm is demonstrated in Fig. S1 where a primitive unit cell 
with the specified number of voxels per axis is used for the computation. At the last data point, 
with 1024 voxels per axis, the slope of computation time on the log-log plot is nearly 4, the 
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expected asymptotic value. In comparison, the straightforward N5 algorithm that we 
implemented required about 10 minutes at 128 voxels per axis and about 5 hours at 256 
voxels per axis. This is consistent with N5 scaling and also requiring significantly more time 
compared to the few seconds used by the improved algorithm.  
 
Touching Spheres on an FCC Lattice 
 
To find the the analytical result for the filling fraction of conformal deposition, until pinch-off, on 
touching spheres arranged to form a fcc lattice, we divide the sum of the initial and grown 
material volume in one primitive unit cell by the total volume of that unit cell. Let R1 be the 
radius of the initial spheres, then it is trivial to derive the unit cell volume, Vcell, and the 
distance, R2, from the sphere's center to the pinch-off point at the centroid of three mutually 
touching spheres (Fig. 1): 
 
V cell= 8R1

3/�2  
 
R2= 2R1 /�3  

 
The interior of the fcc lattice of spheres becomes pinched-off after a total thickness of R2-R1 of 
material is deposited, as all path to the surface become closed. The final volume of the initial 
and deposited material will be the volume of a sphere with radius R2 minus the overlapping 
volume of the neighboring spheres. It is straightforward to derive the volume of a spherical 
cap, the region bounded between a sphere of radius r and an intersecting plane, distance p 
from the sphere center. 
 
V cap= �π /3��2r3− 3r2 p+p3� 
 
As there are 12 nearest neighbors, 12 cap volumes must be subtracted, with r = R2 and p = 
R1. The total filling fraction at pinch-off is 
 

f pinch=
V sphere�R2�− 12V cap

V cell
 

 
f pinch= �π�2/6��9− 5�2/�3�3�≈ 0 .964102939  
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