Synthesis and Characterization of a Novel Kind of Near-Infrared Electrochromic Polymers Containing Anthraquinone Imide Group and Ionic Moieties

25

30

35

60

Yijun Zheng, Jia Zheng, Letian Dou, Wenqiang Qiao, Xinhua Wan^a

5 Table S1: Solubility of the polymers

polymers -	solvents ^a						
	DMF	DMSO	NMP	DMAc	СН3ОН	H ₂ O	MeEtIm ⁺ Br ⁻
1a	++	++	++	++	-	-	±
1b	++	++	++	++	+	+	+
1c	+ +	+ +	+ +	+ +	+ +	++	+ +

a The qualitative solubility was tested with 1 mg of a sample in 1 mL of stirred solvent. ++, soluble at room temperature; +, soluble on heating; \pm , partially soluble; -, insoluble even on heating.

.a. UV-vis spectra of 3 in DMSO with varying concentration

20 Figure S1: UV-vis calibration curves for determining the AQI content in copolymers

a. UV-vis spectra of poly(ViEtIm * Br -) in DMSO with varying concentration

b. Calibration curve of the plots at 220 nm.

Figure S2: UV-vis calibration curves for determining the poly(ionic liquid) content in copolymers

5 Figure S4: GPC traces of the polymers (c=10 mg/mL in DMF)

Figure S6: Cyclic voltammograms of polymer **1b** in DMF and in film, potentials vs Ag/AgCl.

Figure S7: Cyclic voltammograms of polymer **1c** in DMF and in film, potentials vs Ag/AgCl.

25 Figure S9: UV-vis-NIR spectra of polymer 1b in film. (THF containing 0.1 M TBAP)

Figure S10: UV-vis-NIR spectra of polymer 1c in DMF (5×10⁻³ M) containing TBAP in its neutral, anionic, and dianionic states.

Figure S11: UV-vis-NIR spectra of polymer **1c** in film. (THF containing 0.1 M TBAP)

Figure S8: UV-vis-NIR spectra of polymer 1b in DMF (5×10⁻³
M) containing TBAP in its neutral, anionic, and dianionic states.

20

15

Figure S12: Optical attenuation of film of polymer 1a at540 nm
on ITO glass as a function of applied potential with a switching time of 20 seconds and a stepping potential (0.4 V vs silver electrode).