Electronic Supplementary Information (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2009

Mussel-Inspired Molecularly Imprinted Polymer Coating Superparamagnetic Nanoparticles for Protein Recognition

Wen-Hui Zhou^{a,c}, Chun-Hua Lu^b, Xiu-Chun Guo^{a,c}, Fa-Rong Chen^c, Huang-Hao

Yang^{*,b,c} and Xiao-Ru Wang^{*,a,c}

^a College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, P.R. China
^b The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, P.R. China
^c The First Institute of Oceanography, SOA, Qingdao, P.R. China
*Corresponding author: <u>hhyang@fio.org.cn</u>

Contents:

Section I. XRD characterization of the Fe₃O₄ nanoparticles

Section II. Elemental analysis characterization of the Fe₃O₄@PDA

Section III. TGA characterization of the Fe₃O₄@PDA

Section IV. FT-IR spectra characterization of the Fe₃O₄ and Fe₃O₄@PDA

Section V. Effect of template concentration on binding amount of target protein

References

XRD characterization of the Fe₃O₄ nanoparticles

 Fe_3O_4 nanoparticles were prepared through a solvothermal reaction^{S1} and the formation of Fe_3O_4 crystal was confirmed by X-ray diffraction (XRD) analysis. From the wide-angle XRD pattern, it was found that all the peaks could be readily identified as the pure cubic phase of Fe_3O_4 . No impurity peak was observed, indicating that the high purity of Fe_3O_4 crystalline was successfully synthesized.

Figture S1 The wide-angle XRD pattern of synthesized Fe₃O₄ nanoparticles

Supplementary Material (ESI) for *Journal of Materials Chemistry* This journal is © the Royal Society of Chemistry 2010

	N	C	H
	(W%)	(W%)	(W%)
Fe ₃ O ₄ @PDA	0.48	4.99	0.54

Table S1 Element analysis results of the imprinted Fe₃O₄@PDA particles.

Elemental analysis was performed on a Vario MICRO series CHNOS Elemental Analyzer. Elemental analysis of the Fe_3O_4 @PDA detected the carbon content of about 5 wt %. Thus, we can presume that polymers are distributed throughout the Fe_3O_4 particles surface.

TGA characterization results for the Fe₃O₄@PDA.

For the thermogravimetric analysis (TGA) a Netsch TG209 F1 in a N₂ atmosphere was used with a heating rate of 10 K/min between 30 and 900 °C. The TGA curve (Fig. S3) shows that there are three stages of mass change from room temperature to 900°C. The first stage, in which the decrease in weight was 1.10 %, occurred at ~ 30–167 °C. In the second stage, from ~ 167 to 479 °C, there was a decrease in weight to 95.00%. Then the TGA curve suddenly leveled off in the third stage from ~ 479 to 900 °C. In this stage, the decrease of weight was 3.95 %, so the total decrease of weight was 8.98 %. Therefore, the average polydopamine content was 8.95%.

Figure S2 TGA results for the imprinted Fe₃O₄@PDA.

FT-IR spectra characterization of the Fe₃O₄ and Fe₃O₄@PDA

FT-IR spectra also confirmed the formation of polydopamine films on Fe_3O_4 particles. As shown in Fig. S4, there is a characteristic peak appear in the spectrum of the Fe_3O_4 @PDA particles. The strong peak at 1085 cm⁻¹ may attribute to the vibration of C–O bond of PDA, because it did not appear for pure Fe_3O_4 particles, which provides an evidence for the formation of PDA films on Fe_3O_4 .

Figure S3 FT-IR spectra of the imprinted Fe₃O₄@PDA and blank Fe₃O₄ particles.

Effect of template concentration on binding amount of target protein

The influence of the template concentration on the ability of imprinted $Fe_3O_4@PDA$ NPs to rebind the template was investigated. The imprinted $Fe_3O_4@PDA$ NPs were prepared in the presence of different amounts of hemoglobin (ranging from 0.05 to 2 mg/mL protein). The readsorption was performed in Tris buffer containing 0.01% SDS (pH 7.5). Change in absorbance was measured at 406 nm. The polymer's ability to rebind the template protein increases steeply for imprinted $Fe_3O_4@PDA$ prepared within 0.05-1 mg/mL template protein, while it rests unchanged for imprinted $Fe_3O_4@PDA$ prepared in the presence of a template protein concentration above 1 mg/mL. So an optimized protein concentration of 1 mg/mL was selected.

Figure S4 Effect of template concentration on binding amount of target protein.

References

- S1. H. Deng, X. L. Li, Q. Peng, X. Wang, J. P. Chen and Y. D. Li, *Angew. Chem. Int. Ed.* 2005, **44**, 2782.
- S2. F. Bonini, S. Piletsky, A. P. F. Turner, A. Speghini and A. Bossi, *Biosensors and Bioelectronics*, 2007, **22**, 2322.