Supplementary Information

Ultrasensitive Na^+ exchanging performance of free-standing $Fe_3O_4@Na_2Ti_3O_7$ nanosheets indicated by fluorescein[†]

Xuebo Cao,^a, * Xiudong Xue,^a Lianwen Zhu,^a Peng Chen,^a Yingying Song^a and Meng Chen^b, * ^a Key Lab of Organic Synthesis of Jiangsu Province and Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123, P. R. China.Fax:86-512-65880089;Tel:86-512-65880019; E-mail: xbcao@suda.edu.cn ^bDepartment of Chemistry, Fudan University Shanghai 200433 (P. R. China) E-mail: chenmeng@fudan.edu.cn

Table S1. Experimental conditions, chemical compositions, and morphologies for various samples involved in the studies

starting Materials	reaction T (°C)	reaction t (h)	Chemical Compositions	Fe : Ti : Na (molar ratio, ICP)	morphology
$TiO_2 (0.07 g) + Fe (0.015 \sim 0.02 g) +NaOH (10 g) + H_2O (25 mL)$	160	48	$Fe_3O_4 + Na_2Ti_3O_7$	1:3.2:2.1	Nanosheets
$TiO_2 (0.07 g) + NaOH (10 g) + H_2O$ (25 mL)	160	48	Na ₂ Ti ₃ O ₇		Nanotubes
$\begin{array}{c} {\rm TiO_2} \ (0.07 \ g) + {\rm NaOH} \ (10 \ g) + {\rm H_2O} \\ (25 \ mL) \end{array}$	180	48	Na ₂ Ti ₃ O ₇		Nanobelts
Fe (0.015~0.02 g) + NaOH (10 g) + H_2O (25 mL)	160	48	Fe ₃ O ₄		Irregular particles

Figure S1. XRD pattern of the TiO₂ used in the synthesis, where A and R denote anatase and rutile,

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010

respectively.

Figure S2. This figure shows the interactions of $Fe_3O_4@Na_2Ti_3O_7$ nanosheets with FITC (top) and FDC (bottom). a, d) UV-vis absorption spectra of solution **1** (black line) and **3** (green line). Insets: Structural formula of FITC and FDC. b, e) Normalized PL spectra of solution **1** (black line) and **3** (green line). Excitation wavelength: 450 nm. c, f) Photographs of the initial solution (**1**), the solution after adding $Fe_3O_4@Na_2Ti_3O_7$ nanosheets (**2**), and the solution after separating the nanosheets (**3**). The significant enhancement of absorbance and fluorescence in these FL derivates share a same mechanism as the description in FL.

Figure S3. Ions exchange between interlayer Na^+ in various $Na_2Ti_3O_7$ nanostructures and heavy metal ions M^{2+} . A: M = Cd; B: M = Cu; C: M = Pb. In all cases, Fe₃O₄@Na₂Ti₃O₇ nanosheets showed the highest releasing level of Na⁺ and adsorption level of M^{2+} .

The ion exchange experiments were conducted as follows: firstly, 25 mL of aqueous solution of M^{2+} (M=Cd, Cu, or Pb) with a concentration of 1.0 mmol/L were prepared. Then, 10 mg of Fe₃O₄@Na₂Ti₃O₇ nanosheets or Na₂Ti₃O₇ nanotubes or Na₂Ti₃O₇ nanoribbons was dispersed in the respective solutions and stirred for 24 h for sufficient exchange between interlayer Na⁺ in titanates nanostructures and M^{2+} in the solution. After that, solids were separated from the solution by centrifugation at a rate of 2000 rpm and washed four times with deionized water. Both the solids and the supernatants containing Na⁺ released by titanates were collected. Na⁺ in the supernatants was directly analyzed by ICP-AES. To determine the amounts of M²⁺ fixed by various titanate nanostructures, the collected solids were dissolved by concentrated HNO₃. The resulting solutions were then analyzed by ICP-AES.

	$\mathrm{Cd}^{2+}(\mathrm{mg})$	Cu ²⁺ (mg)	$Pb^{2+}(mg)$
Fe ₃ O ₄ @Na ₂ Ti ₃ O ₇ nanosheets	26.2	30.4	40.5
Na ₂ Ti ₃ O ₇ nanotubes	14.7	20.2	30.6
$Na_2Ti_3O_7$ nanoribbons	21.3	25.4	23.8

Table S2. The adsorption ability of per gram titanate nanostructures towards Cd^{2+} , Cu^{2+} , and Pb^{2+}

Figure S4. a, b) SEM images and c) XRD pattern of $Fe_3O_4@Na_2Ti_3O_7$ nanosheets after interactions with FL four times. The nanosheets still maintained their morphology and structure well, suggesting that they were quite stable.