† SUPPORTING INFORMATION

Structure and electrochemical properties of novel mixed Li(Fe_{1-x}M_x)SO₄F (M = Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis[†]

Prabeer Barpanda,^a Nadir Recham,^a Jean-Nöel Chotard,^a Karim Djellab,^a Wess Walker,^b Michel Armand^a and Jean-Marie Tarascon*^{a,c}

^a Laboratoire de Réactivité et Chimie des Solides, UMR 6007, Université de Picardie Jules Verne, 80039 Amiens, France
^b Visiting Post-Doctorate, ^c Visiting Professor, Materials Department, University of California Santa Barbara, CA 93106, USA

* author for correspondence: <u>jean-marie.tarascon@sc.u-picardie.fr</u>

List of Supporting Information

Fig. S1	XRD patterns of (a) $(Fe_{1-x}Co_x)SO_4.H_2O$ and (b) $(Fe_{1-x}Mn_x)SO_4.H_2O$ monohydrate precursors with different compositions.				
Table S1	Lattice parameters and cell volume of $(Fe_{1-x}Co_x)SO_4$. H ₂ O solid-solution precursors having monoclinic (<i>C</i> 2/ <i>c</i>) symmetry.				
Table S2	Lattice parameters and cell volume of $(Fe_{1-x}Mn_x)SO_4$. H ₂ O solid-solution precursors having monoclinic (<i>C</i> 2/ <i>c</i>) symmetry.				
Fig. S2	Some additional SEM images of Li(Fe _{1-x} M _x)SO ₄ F compounds.				
Fig. S3	Some representative EDAX elemental analysis of $\text{Li}(\text{Fe}_{1-x}\text{Mn}_x)\text{SO}_4\text{F}$ compounds.				
Fig. S4	Galvanostatic electrochemical cycling profiles of (a) $Li(Fe_{0.9}Mn_{0.1})SO_4F$, (b) $Li(Fe_{0.8}Mn_{0.2})SO_4F$ compounds.				

Fig. S1 X-ray diffraction patterns of (a) $(Fe_{1-x}Co_x)SO_4.H_2O$ and (b) $(Fe_{1-x}Mn_x)SO_4.H_2O$ monohydrate precursors varying the Co or Mn doping content from 0 to 100 wt%. The numbers alongside the diffraction patterns present the Co or Mn dopant content (wt%). As shown, increasing Co content gradually leads to lower lattice volume as indicated by peak shift towards higher diffraction angle (or lower *d* value) due to the lower ionic radii of Co wrt Fe (similar to Ni doping in the manuscript Fig 2). On the other hand, Mn doping shifts the XRD peaks towards lower angle (or higher *d* value) reflecting the larger ionic radii of Mn wrt Fe. The dashed lines are shown to guide eyes about the gradual peak shift upon varying the precursor composition.

Materials	a (Å)	b (Å)	c (Å)	V (Å ³)	β (°)
FeSO ₄ .H ₂ O	7.0918(3)	7.5352(2)	7.7822(2)	364.67(2)	118.72(2)
(Fe _{0.90} Co _{0.10})SO ₄ .H ₂ O	7.0845(2)	7.5429(1)	7.7645(1)	364.09(1)	118.66(1)
(Fe _{0.60} Co _{0.40})SO ₄ .H ₂ O	7.0904(2)	7.5864(2)	7.7145(1)	362.36(1)	119.16(5)
(Fe _{0.50} Co _{0.50})SO ₄ .H ₂ O	7.0405(2)	7.5553(2)	7.6875(1)	357.80(1)	118.95(1)
(Fe _{0.40} Co _{0.60})SO ₄ .H ₂ O	7.0246(1)	7.5620(1)	7.6753(1)	356.77(1)	118.86(2)
(Fe _{0.20} Co _{0.80})SO ₄ .H ₂ O	6.9866(6)	7.5498(6)	7.6353(4)	352.93(4)	118.80(1)
CoSO ₄ .H ₂ O	6.9542(8)	7.5731(1)	7.6242(1)	351.72(3)	118.68(1)

Table S1Lattice parameters and cell volume of $(Fe_{1-x}Co_x)SO_4.H_2O$ solid-solutionprecursors having monoclinic (C2/c) symmetry.

Table S2	Lattice parameters and cell volume of (Fe _{1-x} Mn _x)SO ₄ .H ₂ O solid-solution
	precursors having monoclinic $(C2/c)$ symmetry.

Materials	a (Å)	b (Å)	c (Å)	V (Å ³)	β (°)
FeSO ₄ .H ₂ O	7.0918(3)	7.5352(2)	7.7822(2)	364.67(2)	118.72(2)
(Fe _{0.90} Mn _{0.10})SO ₄ .H ₂ O	7.1279(2)	7.5305(2)	7.7921(1)	366.37(2)	118.84(5)
(Fe _{0.70} Mn _{0.30})SO ₄ .H ₂ O	7.1342(2)	7.4689(2)	7.8862(1)	367.19(1)	119.09(5)
(Fe _{0.50} Mn _{0.50})SO ₄ .H ₂ O	7.1592(3)	7.5473(3)	7.8404(2)	370.35(2)	119.05(2)
(Fe _{0.20} Mn _{0.80})SO ₄ .H ₂ O	7.1425(2)	7.4985(2)	7.7248(2)	372.48(2)	115.80(3)
MnSO ₄ .H ₂ O	7.1241(6)	7.6631(4)	7.7642(7)	381.44(3)	115.85(12)

Fig. S2 SEM images showing the topotactic reaction involving initial (Fe_{1-x}M_x)SO₄.H₂O precursor and final Li(Fe_{1-x}M_x)SO₄F products with similar morphology. (a) $(Fe_{0.80}Co_{0.20})SO_4.H_2O$, (b) Li(Fe_{0.80}Co_{0.20})SO₄F, (c) $(Fe_{0.80}Ni_{0.20})SO_4.H_2O$, (d) Li(Fe_{0.80}Ni_{0.20})SO₄F, e) $(Fe_{0.90}Ni_{0.10})SO_4.H_2O$ and f) Li(Fe_{0.90}Ni_{0.10})SO₄F.

Fig. S3 Some representative EDAX elemental analysis done in conjunction with SEM study to confirm the stoichiometric composition and uniform distribution of individual 3d transition metals in Li(Fe_{1-x}M_x)SO₄F products; (a) Li(Fe_{0.90}Co_{0.10})SO₄F, (b)

Fig. S4 Galvanostatic electrochemical cycling profiles of (a) $\text{Li}(\text{Fe}_{0.9}\text{Mn}_{0.1})\text{SO}_4\text{F}$, (b) $\text{Li}(\text{Fe}_{0.8}\text{Mn}_{0.2})\text{SO}_4\text{F}$ compounds, cycled between 2.5 to 4.5 V at C/10 (1 Li in 10 hours) in Li-half cell swagelok setting. The electrodes were prepared by ball-milling

 $Li(Fe_{1-x}Mn_x)SO_4F$ and carbon black (85:15 weight ratio) for 15 minutes. A 3.6 V plateau is observed in both cases with excellent cycling stability.