Shape memory epoxy: Composition, structure, properties and shape memory performances

Ingrid A. Rousseau^{*, a} and Tao Xie^a

^a General Motors Company, Research & Development Center, 30500 Mound Rd, Warren, MI 48090-9055. Fax: 586-986-1207. *Corresponding Author: ingrid.rousseau@gm.com, Tel: 586-986-0638

Supplementary Equations

$$L_{m}^{d}(N) = L_{o}(N) + \Delta L_{def}(N)$$
(S1)

$$L_{m}^{s}(N) = L_{m}^{d} - \Delta T \cdot CLTE_{\varepsilon_{m}} - \Delta L_{rel}^{c}(N)$$
(S2)

$$= L_o(N) + \Delta L_{def}(N) - \Delta T \cdot CLTE_{\varepsilon_m} - \Delta L^u_{rel}(N)$$

$$L_{u}(N) = L_{m}^{s}(N) - \Delta L_{rel}^{u}(N)$$

= $L_{o}(N) + \Delta L_{def}(N) - \Delta T \cdot CLTE_{\varepsilon_{m}} - \Delta L_{rel}^{c}(N) - \Delta L_{rel}^{u}(N)$ (S3)

$$L_{p}(N) = L_{u}(N) + \Delta T \cdot CLTE_{\varepsilon_{u}} + \Delta L_{rec}(N)$$

= $L_{o}(N) + \Delta L_{def}(N) - \Delta T \cdot CLTE_{\varepsilon_{m}} - \Delta L_{rel}^{c}(N) - \Delta L_{rel}^{u}(N) + \Delta T \cdot CLTE_{\varepsilon_{u}} + \Delta L_{rec}(N)$ (S4)

In Eqs. (S1) through (S4), ΔL_{def} denotes the change in length of the sample imposed by the deformation. ΔL_{rel}^{c} and ΔL_{rel}^{u} represent the change in length of the sample due to strain relaxation upon cooling and unloading, respectively. Finally, ΔL_{rec} stands for the change in sample length occurring during strain recovery in the last step of the SMC. The apparent CLTE of our epoxies was shown to be a function of ε_m^{d} . Therefore, the CLTE adopts specific values at ε_u and ε_m^{d} : CLTE_{ε_u} or CLTE_{ε_m}, respectively. Furthermore, ΔL_{def} can be expressed as follows:</sub>

$$\Delta L_{def}(N) = L_o \left(\epsilon_m^{d}(N) - \epsilon_o(N) \right).$$
(S5)

During a shape memory cycle, the strains adopted by the samples can be defined by:

$$\varepsilon_{o}(N) = \frac{L_{o}(N) - L_{o}}{L_{o}},$$
(S6)

$$\varepsilon_{\rm m}^{\rm d}(\rm N) = \frac{L_{\rm m}^{\rm d}(\rm N) - L_{\rm o}}{L_{\rm o}},\tag{S7}$$

$$\varepsilon_{u}(N) = \frac{L_{u}(N) - L_{o}}{L_{o}},$$
(S8)

and,
$$\varepsilon_p(N) = \frac{L_p(N) - L_o}{L_o}$$
. (S9)

By substituting Eqs. (S8) and (S9) in Eq. (3) for the shape fixity and by substituting with Eqs. (S1) and (S3), R_f becomes:

$$\frac{R_{f}}{100} = \frac{L_{m}^{d}(N) - L_{o} - \Delta T \cdot CLTE_{\varepsilon_{m}} - \Delta L_{rel}^{c} - \Delta L_{rel}^{u}}{L_{m}^{d}(N) - L_{o}}.$$
(S10)

Eq. (S7) allows for R_f to be rewritten:

$$\frac{R_{f}}{100} = 1 - \frac{\Delta L_{rel}^{c} + \Delta L_{rel}^{u}}{L_{o} \varepsilon_{m}^{d}(N)} - \frac{\Delta T \cdot CLTE_{\varepsilon_{m}}}{L_{o} \varepsilon_{m}^{d}(N)},$$
(S11)

where the second term in the right hand side is negligible (≤ 1).

Supplementary Figures

Figure S 1 Schematic representation of the evaluation of the shape memory variables (deformation temperature (T_d) , setting temperature (T_s) , storage moduli at T_d and T_s (E'_d and E'_s, respectively), and transformation temperature (T_{trans})) determined from the equilibrium mechanical data (storage modulus (E'), loss modulus (E'') and loss angle (δ), glass transition temperature (T_g)) measured for each epoxy SMP.

Figure S 2 Effect of increasing the number of consecutive shape memory cycles (N) on (a) the shape fixity (R_f), (b) and (c) the shape recovery (R_r^{min}) and (R_r^{eu}), respectively, of our epoxy SMPs. The shape recovery and shape fixity reach stable values after the first cycle is completed except for E-C10, which incorporates flexible pendant decyl chains. This is likely due to a rearrangement of the decyl chains during the deformation stage which disables them from

recovering their original state during the recovery stage.

Figure S 3 Effect of the deformation strain $\varepsilon_u(N)$ - $\varepsilon_o(N)$ on (a) the recovery speed (V_r) and (b) the recovery time (t_r) for the shape memory epoxies. Four successive shape memory cycles were performed on each sample, each under increasing deformation strains. V_r varies linearly with the recoverable strain ($\varepsilon_u(N)$ - $\varepsilon_o(N)$), and t_r varies accordingly.

Figure S 4 Influence of the recovery heating rate on (a) the temperatures at which 10 and 90% strain recovery are achieved ($T_{10\%}$ and $T_{90\%}$, respectively) and (b) the response temperature (T_r).

Figure S 5 Influence of the recovery heating rate on (a) the recovery speed and (b) the recovery time of the epoxy SMPs. Above 10 $^{\circ}$ C/min, V_r and t_r leveled off most likely as a result of low heat transfer which became the limiting factor for the shape memory response.