Journal of Materials Chemistry

On the thermodynamic and kinetic investigations of a [c2] daisy chain polymer

Mohamad Hmadeh,^a Lei Fang,^b Ali Trabolsi,^b Mourad Elhabiri,^a* Anne-Marie Albrecht-Gary^a* and J. Fraser Stoddart^b*

^a Laboratoire de Physico-Chimie Bioinorganique, UdS-CNRS (UMR 7177), Institut de Chimie, Université de Strasbourg, ECPM, 25 rue Becquerel, 67200, Strasbourg, France. *E-mail:* <u>amalbre@chimie.u-strasbg.fr</u>, <u>elhabiri@chimie.u-strasbg.fr</u> *Fax:* +33 (0)3 68 85 26 39; Tel: +33 (0)3 68 85 26 38

^bDepartment of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. Fax: (+1)-847-491-1009. E-mail: <u>stoddart@northwestern.edu</u> Homepage : <u>http://stoddart.northwestern.edu</u>

Supporting Information

*Correspondence Address	
Professor J Fraser Stoddart	Professor Anne-Marie Albrecht-Gary and
Department of Chemistry	Dr. Mourad Elhabiri
Northwestern University	Laboratoire de Physico-Chimie Bioinorganique,
2145 Sheridan Road, Evanston, IL 60208 (USA)	UdS-CNRS (UMR 7177), Université de
Fax: (+1)-847-491-1009	Strasbourg, Institut de Chimie, ECPM, 25 rue
Email: stoddart@northwestern.edu	Becquerel, 67200, Strasbourg, France.
	Fax: +33 (0)3 68 85 26 39
	Emails: amalbre@chimie.u-strasbg.fr,
	elhabiri@chimie.u-strasbg.fr

Figure S1: (a) UV-Visible absorption spectrophotometric titration of $4 \cdot 2PF_6$ with DB24C8. $[4 \cdot 2PF_6]_{tot} = 1.44 \times 10^{-3}$ M; (1) [DB24C8]_{tot} / $[4 \cdot 2PF_6]_{tot} = 0$; (2) [DB24C8]_{tot} / $[4 \cdot 2PF_6]_{tot} = 12.8$; l = 1 cm. (b) Absorption electronic spectra of $4 \cdot 2PF_6$ substrate and of $4^{2+} \subset$ DB24C8 complex. Solvent: MeCN; T = 25.0(2) °C.

Figure S2: (a) UV-Visible absorption spectrophotometric titration of $3 \cdot 2PF_6$ with DB24C8. $[3 \cdot 2PF_6]_{tot} = 6.14 \times 10^{-4} \text{ M}$; (1) [DB24C8]_{tot} / $[3 \cdot 2PF_6]_{tot} = 0$; (2) [DB24C8]_{tot} / $[3 \cdot 2PF_6]_{tot} = 35.8$; l = 1 cm. (b) Absorption electronic spectra of $3 \cdot 2PF_6$ substrate and of $3^{2+} \subset$ DB24C8 complex. Solvent: MeCN; T = 25.0(2) °C.

Figure S3: (a) UV-Visible absorption spectrophotometric titration of DB24C8 with DBA·CF₃CO₂. [DB24C8]_{tot} = 1.128×10^{-3} M; (1) [DBA·CF₃CO₂]_{tot} / [DB24C8]_{tot} = 0; (2) [DBA·CF₃CO₂]_{tot} / [DB24C8]_{tot} = 12.2; l = 0.2 cm. (b) Absorption electronic spectra of DBA·CF₃CO₂ substrate, of DB24C8 receptor and of DBA⁺⊂DB24C8 complex. Solvent: MeCN; T = 25.0(2) °C.

Figure S4. UV-Vis absorption spectrophotometric variations recorded in MeCN upon addition of (a) DABCO to a solution of $1H_2 \cdot 6PF_6$ and $[1H_2 \cdot 6PF_6]_{tot} = 4.08 \times 10^{-5}$ M; (1) [DABCO]_{tot} / $[1H_2 \cdot 6PF_6]_{tot} = 0$; (2) [DABCO]_{tot} / $[1H_2 \cdot 6PF_6]_{tot} = 4.0$. (b) CF₃CO₂H to a solution of (1·4PF₆). Solvent: MeCN; T = 25.0(2) °C; l = 1 cm.

 $[(\mathbf{1}\cdot 4PF_6)]_{tot} = 4.08 \times 10^{-5} \text{ M};$ (1) $[CF_3CO_2H]_{tot} / [(\mathbf{1}\cdot 4PF_6)]_{tot} = 0;$ (2) $[CF_3CO_2H]_{tot} / [(\mathbf{1}\cdot 4PF_6)]_{tot} = 5.8$

Figure S5. Variation in the absorbance of the CT band (λ = 390 nm) with the gradual addition of DABCO or CF₃CO₂H to monomer 1H₂·6PF₆. Solvent: MeCN; *T* = 25.0(2) °C; *l* = 1 cm; [1H₂·6PF₆]_{tot} = [1·4PF₆]_{tot} = 4.08 × 10⁻⁵ M.

Figure S6. Variation of the absorbance at $\lambda = 390$ nm (CT absorption) versus time for the acid-induced extension and the base-promoted contraction of the [*c*2] daisy chain monomer 1H₂·6PF₆. Solvent: MeCN; T = 25.0(2) °C; l = 1 cm; $[1H_2 \cdot 6PF_6]_{tot} = 7.27 \times 10^{-5}$ M; $[DABCO]_{tot} = 2.56 \times 10^{-3}$ M; $[1 \cdot 4PF_6]_{tot} = 7.05 \times 10^{-5}$ M; $[CF_3CO_2H]_{tot} = 2.93 \times 10^{-3}$ M.

Figure S7. Variations of the pseudo-first-order rate constants k_{obs} (s⁻¹), relative to the baseinduced contraction (a) and acid-triggered extension (b) of the [c2]daisy chain monomer as a function of [DABCO]_{tot} and [CF₃CO₂H]_{tot}, respectively. Solvent: acetonitrile; T = 25.0(2) °C. (a) $[1H_2 \cdot 6PF_6]_{tot} = 7.27 \times 10^{-5}$ M; (b) $[1 \cdot 4PF_6]_{tot} =$ 7.05×10^{-5} M.

Figure S8. Spectral changes observed on addition of DABCO to a solution of the dimeric self-complex (5H·PF₆)₂. Solvent: MeCN; T = 25.0(2) °C; l = 0.2 cm; $[(5H·PF_6)_2]_{tot} = 2.25 \times 10^{-4}$ M; (1) [DABCO] / $[(5H·PF_6)_2] = 0$; (2) [DABCO] / $[(5H·PF_6)_2] = 8$ (immediately recorded after addition of DABCO); (3) [DABCO] / $[(5H·PF_6)_2] = 8$ (recorded after 10 minutes).

Figure S9. Variation of the absorbance at $\lambda = 260$ nm versus time for the base-induced dissociation of the dimeric self-complex (5H·PF₆)₂. Solvent: MeCN; T = 25.0(2) °C; l = 0.2 cm; $[(5H·PF_6)_2]_{tot} = 2.15 \times 10^{-4}$ M; $[DABCO]_{tot} = 4.42 \times 10^{-3}$ M.

Figure S10. Variations of the pseudo-first-order rate constants k_{obs} (s⁻¹) relative to the baseinduced dissociation of the dimeric self-complex (5H·PF₆)₂ as a function of [DABCO]_{tot}. Solvent: MeCN; T = 25.0(2) °C; l = 0.2 cm; [(5H·PF₆)₂]_{tot} = 2.15 × 10⁻⁴ M.