Supporting Information

For

Silole-spaced Triarylamine Derivatives as Highly Efficient Organic Sensitizers in Dye-Sensitized Solar Cells (DSSCs)

Sangwon Ko, Hyunbong Choi,[†] Moon-Sung Kang,[‡] Hyonseok Hwang, Heesun Ji, Jinho Kim, Jaejung Ko[†]* and Youngjin Kang*

Division of Science Education & Department of Chemistry, Kangwon National University, Chuncheon 200-701, Republic of Korea

[†]Department of New Material Chemistry, Korea University, Jochiwon, Chungnam 339-700, Republic of Korea

[‡]Energy Lab, Samsung SDI Corporate R&D Center, 428-5 Gongse-dong, Giheung-gu, Yongin-si, Gyeonggido 449-577, Republic of Korea

Contents

- Figure S1. Cyclic voltammetry of 7a dye attached to a nanocrystalline TiO₂ film deposited on conducting FTO glass.
- Figure S2. Cyclic voltammetry of 7c dye attached to a nanocrystalline TiO₂ film deposited on conducting FTO glass.
- Figure S3. A photocurrent voltage curve obtained with a DSSC based on 7a (red line), 7b (green line), 7c (blue line)and JK-2 (black line) under AM 1.5 radiation. The dark current/bias potential relationship is shown as dotted curves.

Figure S1. Cyclic voltammetry of 7a dye attached to a nanocrystalline TiO₂ film deposited on conducting FTO glass.

Figure S2. Cyclic voltammetry of 7c dye attached to a nanocrystalline TiO₂ film deposited on conducting FTO glass.

Figure S3. A photocurrent voltage curve obtained with a DSSC based on **7a** (red line), **7b** (green line), **7c** (blue line)and **JK-2** (black line) under AM 1.5 radiation. The dark current/bias potential relationship is shown as dotted curves