This journal is (c) The Royal Society of Chemistry 2010

Supporting Information for:

In Situ Neutron Diffraction Study of the High-Temperature Redox Chemistry of $Ln_{3-x}Sr_{1+x}CrNiO_{8-\delta}$ (Ln = La, Nd) under Hydrogen

Florent Tonus¹, Mona Bahout^{1,*}, Peter D. Battle^{2,*}, Thomas Hansen³, Paul Henry⁴ and T. Roisnel¹

- 1. Université de Rennes 1, Laboratoire Sciences Chimiques de Rennes, UMR CNRS 6226, 263 avenue du général Leclerc, 35402, Rennes CEDEX, France
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, U.
 K.
- 3. Institut Laue Langevin, 6 rue Jules Horowitz, BP156, 38042 Grenoble CEDEX 9, France
- 4. MI-1, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.

This journal is (c) The Royal Society of Chemistry 2010

Figure S1. Thermogravimetric analysis (heating rate of 2 °C min⁻¹) under 5 % H_2 in N_2 for $Nd_{2.25}Sr_{1..75}CrNiO_{8-\delta}$

Figure S2. XRD pattern fit at room temperature of $La_2Sr_2CrNiO_{8-\delta}$; (a) as-prepared, (b) after hydrogen reduction (in 5% H₂ at 700 °C, 8h)

Figure S3. XRD pattern fit at room temperature of $Nd_2Sr_2CrNiO_{8-\delta}$; (a) as-prepared, (b) after hydrogen reduction (in 5% H₂ at 700 °C, 8h)

Figure S4. XRD pattern fit at room temperature of $Nd_{2.25}Sr_{1.75}CrNiO_{8-\delta}$; (a) as-prepared, (b) after hydrogen reduction (in 5% H₂ at 700 °C 8h)

Figure S5. Neutron Powder Diffraction pattern fit of $Nd_2Sr_2CrNiO_{8-\delta}$; (a) at 20 °C before hydrogen reduction, (b) at 710 °C after reduction, (c) at 90 °C after reduction and cooling

Figure S6. Neutron Powder Diffraction pattern fit of $Nd_{2.25}Sr_{1.75}CrNiO_{8-\delta}$; (a) at 20 °C before hydrogen reduction, (b) at 450 °C after reduction, (c) at 80 °C after reduction

Figure S7. Occupancy factor of oxygen sites in (a) $Nd_2Sr_2CrNiO_{8-\delta}$ and (b) $Nd_{2.25}Sr_{1.75}CrNiO_{8-\delta}$ as a function of temperature under hydrogen flow. Green and black squares represent the occupancy of O1 (axial) and O2 (equatorial) sites during heating; blue and red triangles represent O1 and O2 on cooling. The blue line corresponds to the Ni (II) composition

Figure S8. Temperature dependence of the unit cell parameters of (a) $Nd_2Sr_2CrNiO_{8-\delta}$ and (b) $Nd_{2.25}Sr_{1.75}CrNiO_{8-\delta}$ under hydrogen flow. Squares (triangles) represent data collected on heating (cooling).

Figure S9. (a) Occupancy factor of oxygen sites in $Nd_2Sr_2CrNiO_{8-\delta}$ as a function of temperature under oxidizing conditions after reduction. Green and black squares represent the occupancy of O1 (axial) and O2 (equatorial) sites during heating; blue and red triangles represent O1 and O2 during cooling;

This journal is (c) The Royal Society of Chemistry 2010

(b) temperature dependence of the unit cell parameters of $Nd_2Sr_2CrNiO_{8-\delta}$ under oxidizing conditions. Squares (triangles) represent data collected on heating (cooling)

Figure S10 Rietveld refinements of the X ray diffraction pattern of $Nd_2Sr_2CrNiO_{7.38}$ between $2\theta = 76.6^{\circ}$ and 81.1° (a) with a single profile for all peaks, (b) with anisotropic peak-broadening taken into account.

Figure S11. Temperature dependence of the (a) Cr/Ni-O1, (b) Nd/Sr-O1 (along the *c*-axis) and (c) Nd/Sr-O2 bond lengths under hydrogen flow, in Nd₂Sr₂CrNiO_{8- δ}. Squares (triangles) represent data collected on heating (cooling)

Figure S12. Temperature dependence of the (a) Cr/Ni-O1, (b) Nd/Sr-O1 (along the *c*-axis) and (c) Nd/Sr-O2 bond lengths under hydrogen flow, in $Nd_{2.25}Sr_{1.75}CrNiO_{8-\delta}$. Squares (triangles) represent data collected on heating (cooling)

Figure S1

Figure S4

Figure S5

Figure S6

(a)

(a)

Figure S10

(b)

Figure S11

(b)

(c)

Figure S12