Nonlinear Optical Activity in Dipolar Organic-

Lanthanide Complexes

Ga-Lai Law, ^d Ka-Leung Wong,^c Kok-Kin Lau^d, Lap Sze-to^d, Peter A. Tanner,^{*b} Fonchu Kuo,^e and Wing-Tak Wong^{*a}

^a Department of Applied Biology and Chemistry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR.. Tel: 852 3400 8789; E-mail: <u>bcwtwong@polyu.edu.hk</u>

^b Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR. Tel: 852 2788 7840; E-mail: <u>bhtan@cityu.edu.hk</u> ^c Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR.

^d Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAK..

^e Department of Computer Science, Soochow University, Taipei, Taiwan.

Supporting Information for publication

Synthesis of Complexes and Characterization by FT-IR and ESI-MS.

Figure S1 Selected SHG of lanthanide complexes (Ln = Dy, Er, Gd and Tb, $\lambda_{ex} = 1.15 \,\mu$ m). **Figure S2.** Powder XRD of the series of lanthanide complexes (Type I, Ln = Y, Ce, Pr, Nd, Eu and Gd;

Type II, Ln = Lu, Yb, Tm and Er) in the solid state. (Full powder pattern of Figure 9).

Figure S3. UV-vis absorption spectrum of cinnamic acid and its lanthanide complexes $(1.0 \times 10^{-5} \text{ M}, 10^{-5} \text{ M})$

MeOH).

Figure S4. ESI-MS spectra of Eu, Gd, Tb complexes.

Table S1. Crystallographic data collection, intensity measurements and structure refinement and

geometric parameters for $Ln[C_9H_7O_2)_3]_n$.

Table S2. Selected bond lengths (Å) of Ln = Eu 6 (Type I) and Ln = Er 12 (Type II) complexes.

Table S3. Selected bond angles (°) of Ln = Eu 6 (Type I) and Ln = Er 12 (Type II) complexes.

Synthesis of lanthanide complexes. [(*trans*-cinnamate)₃Ln]_n (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Ho, Yb, Tm, Lu and Y): Trans-cinnamic acid (300 mg) was used as the chelating ligand with various lanthanide nitrate salts (Aldrich, 99.99%) in the mole ratio 3.5 to 1. The mixtures were stirred for 12 hours in methanol at room temperature and the pale colored precipitates were filtered out and were re-crystallized with acetonitrile. The purified products were isolated as pale-colored crystals. Ln = La, 1: white powder; yield: 519 mg (44%). MS (ESI): m/z 581 (M⁺ + 2), 580 (M⁺ + 1), 579 (M^+) . Ln = Ce, 2: pale yellow powder; yield: 632 mg (51%). MS (ESI): m/z 582 $(M^+ + 2)$, 581 (M^+) + 1), 580 (M^+). Ln = Pr, **3**: pale green powder; yield: 706 mg (58%). MS (ESI): m/z 583 (M^+ + 2), $582 (M^+ + 1)$, $581 (M^+)$. Ln = Nd, 4: pale purple powder; yield: 711 mg (60%). MS (ESI): m/z 588 $(M^{+} + 3)$, 587 $(M^{+} + 2)$, 586 $(M^{+} + 1)$, 585 (M^{+}) , 584 $(M^{+} - 1)$, 583 $(M^{+} - 2)$, 582 $(M^{+} - 3)$. Ln = Sm, 5: white powder; yield: 603 mg (48%). MS (ESI): m/z 596 (M⁺ + 5), 595 (M⁺ + 4), 594 (M⁺ + 3), 593 $(M^+ + 2)$, 592 $(M^+ + 1)$, 591 (M^+) , 590 $(M^+ - 1)$, 589 $(M^+ - 2)$, 588 $(M^+ - 3)$, 587 $(M^+ - 4)$. Ln = Eu, 6: pale yellow powder; yield: 680 mg (57%). MS (ESI): m/z 594 (M⁺ + 1), 593 (M⁺), 592 (M⁺ -1), 591 (M^+ - 2). IR (KBr): 1533, 1504 cm⁻¹ asym v(COO⁻), 1448, 1402 cm⁻¹ sym v(COO⁻). Ln = Gd, 7: white powder; yield: 358 mg (30%). MS (ESI): $m/z \ 602 \ (M^+ + 3), \ 601 \ (M^+ + 2), \ 600 \ (M^+ + 3), \ 601 \ (M^+$ 1), 599 (M⁺), 598 (M⁺ - 1), 597 (M⁺ - 2), 596 (M⁺ - 3). IR (KBr): 1533, 1504 cm⁻¹ asym v(COO⁻), 1449, 1402 cm⁻¹ sym v(COO⁻). Ln = Tb, 8: white powder; yield: 530 mg (44%). MS (ESI): m/z 600 (M^+) , 599 $(M^+ - 1)$, 598 $(M^+ - 2)$. IR (KBr): 1533, 1504 cm⁻¹ asym v(COO⁻), 1448, 1404 cm⁻¹ sym $v(COO^{-})$. Ln = Dy, 9: white powder; yield: 579 mg (47%). MS (ESI): m/z 605 (M⁺ + 2), 604 (M⁺ + 1), 603 (M^+), 602 (M^+ - 1), 601 (M^+ - 2), 600 (M^+ - 3). Ln = Y, 10: white powder; yield: 501 mg (46%). MS (ESI): m/z 532 (M⁺ + 2), 531 (M⁺ + 1), 530 (M⁺). Ln = Ho, 11: pale pink powder; yield: 599 mg (48%). MS (ESI): m/z 606 (M⁺), 605 (M⁺ - 1), 604 (M⁺ - 2). Ln = Er, 12: pale pink powder; vield: 582 mg (47%). MS (ESI): $m/z 609 (M^+ + 1), 608 (M^+), 607 (M^+ - 1), 606 (M^+ - 2), 605 (M^+ - 2), 605 (M^+ - 1), 606 (M^+ - 2), 605 (M^+ - 2), 605$ 3). Ln = Tm, 13: white powder; yield: 609 mg (49%). MS (ESI): $m/z \ 611 \ (M^+ + 2), \ 610 \ (M^+ + 1),$ 609 (M⁺). Ln = Yb, 14: white powder; yield: 689 mg (55%). MS (ESI): m/z 617 (M⁺ + 3), 616 (M⁺ + 2), 615 $(M^+ + 1)$, 614 (M^+) , 613 $(M^+ - 1)$, 612 $(M^+ - 2)$, 611 $(M^+ - 3)$, 610 $(M^+ - 4)$; IR (KBr): 1533, 1504 cm⁻¹ asymv(COO⁻), 1448, 1402 cm⁻¹ sym v(COO⁻). Ln = Lu, 15: white powder; yield: 689 mg (55%). MS (ESI): m/z 616 (M^+ + 2), 615 (M^+ + 1) IR (KBr): 1534, 1504 cm⁻¹ asym v(COO⁻¹)), 1448, 1402 cm⁻¹ sym v(COO⁻). The crystal data of the 14 lanthanide complexes are listed in Table S1.

Figure S1 Selected SHG of lanthanide complexes (Ln = Dy, Er, Gd and Tb, $\lambda_{ex} = 1.15 \mu m$).

Figure S2. Powder XRD of the series of lanthanide complexes (Type I, Ln = Y, Ce, Pr, Nd, Eu and Gd; Type II, Ln = Lu, Yb, Tm and Er) in the solid state. (Full powder pattern of Figure 10).

Figure S3. UV-vis absorption spectrum of cinnamic acid and its lanthanide complexes $(1.0 \times 10^{-5} \text{ M}, \text{MeOH})$.

	P	Ce	PN	Sm	Eu	Gd	Tb	>	DV	우	Ъ	Ē	٩X	Lu
F. W.	580.36	581.58	585.7	591.86	593.42	598.71	600.38	530.37	603.96	606.39	608.72	610.39	614.50	616.43
T/°C	301	301	301	301	303	301	303	301	301	301	301	301	301	301
Crystal system	Trigonal	Trigonal	Trigonal	Trigonal	Trigonal	Trigonal	Trigonal	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space Group	R3c (#161)	R3c (#161)	R3c (#161)	R3c (#161)	R3c (#161)	R3c (#161)	R3c (#161)	P21 (#4)	P2 ₁ (#4)	P21 (#4)	P2 ₁ (#4)	P2 ₁ (#4)	P2 ₁ (#4)	P21 (#4)
a /Å	22.636(2)	22.646(2)	22.657(3)	22.646(2)	22.649(4)	22.654(6)	22.647(4)	11.543(10)	11.520(11)	11.544(1)	11.548(1)	11.564(1)	11.574(2)	11.598(2)
¢/q	22.636(2)	22.646(2)	22.657(3)	22.646(2)	22.649(4)	22.654(6)	22.647(4)	7.918(7)	7.936(7)	7.917(9)	7.886(1)	7.870 (9)	7.848(2)	7.817(2)
c /Å	7.7554(10)	7.9212(7)	7.830(1)	7.7670(11)	7.744(1)	7.722(2)	7.703(1)	13.062(11)	13.078(12)	13.071(2)	13.048(1)	13.042(2)	13.043(3)	13.021(3)
α/°	06	06	06	06	06	06	06	06	06	06	06	06	06	06
β/°	06	06	06	06	06	06	06	94.139(2)	94.049(2)	94.136(2)	94.15(1)	94.280(2)	94.384(3)	94.354(3)
۰/٨	120	120	120	120	120	120	120	06	6	06	06	06	06	06
V / Å ³	3441.4(6)	3518.2(5)	3481.3(9)	3449.5(7)	3440.3(10)	3432.0(16)	3421.5(10)	1190.8(2)	1192.7(2)	1191.5(3)	1185.1(2)	1183.6(2)	1181.3(4)	1176.1(4)
Z	9	9	9	9	9	9	9	2	2	2	2	2	2	2
d _{calc} / g cm ⁻³	1.680	1.647	1.676	1.709	1.718	1.738	1.748	1.479	1.682	1.690	1.706	1.713	1.727	1.740
µ / mm-1	1.896	1.981	2.277	2.601	2.770	2.948	3.136	2.492	3.117	3.364	3.572	3.780	3.999	4.2378
F(000)	1728	1734	1746	1758	1764	1770	1776	540	594	596	598	009	602	604
	0.01X0.02X	0.06X0.07X0	0.02X0.04X0.4	0.05X0.07X0.3	0.08X0.18X	0.05X0.06X	0.04X0.05X	0.08X0.17X	0.15X0.21X	0.13X0.14X	0.12X0.16X	0.06X0.17X	0.08X0.17X	0.02x0.03x
urystal size / mm	0.48	.41	-	9	0.42	0.48	0.48	0.38	0.41	0.30	0.44	0.35	0.38	0.48
No. of unique refins. (Total)	6925	7227	7574	6304	6841	6917	2000	7456	6882	7328	6869	7338	7370	7162
No. of obsd refins.	3011	2011	1036		1CDE	1704	CU21	ONED	0140	0020	1030	0000	r r J G	1764
(>2ơ(l))	0.041	1430	0621	1001	0001	10/1	CD / I	74.00	6112	0017	1007	0707	4402	10/6
R₁ (I>2ơ(I))	0.031	0.018	0.015	0.015	0.019	0.018	0.035	0.029	0.019	0.21	0.022	0.020	0.030	0.033
wR (all data)	0.034	0.021	0.017	0.018	0.024	0.022	0.038	0.028	0.023	0.26	0.027	0.021	0.037	0.041
Goodness of fit/S	1.034	1.006	1.067	1.054	1.054	1.043	1.081	1.024	1.014	1.038	1.024	1.046	1.029	1.001
Max. shift/error	0.043	<0.001	0.013	0.028	0.031	0.021	0.003	<0.0001	0.015	0.028	0.034	0.00	0.023	0.012

Table S1. Crystallographic data collection intensity measurements and structure refinement and geometric parameters for I $n[C_0H_2O_2]^2$

Table S1. (cont)

	La	Ce	Ŋ	Sm	Eu	Gd	Тb	٢	Dy	Ю	Er	Tm	٩	Lu
Coordination	8	6	6	6	6	6	6	7	7	7	7	7	7	7
À / MM	3.878(4)	3.961	3.915(1)	3.884(1)	3.872(2)	3.861(1)	3.852(3)	4.124(1)	4.135(1)	4.122(2)	4.107(2)	4.096(1)	4.083(3)	4.067(2)
M0/Å	2.397(5) - 2.625(4)	2.466(2) - 2.678(2)	2.429(3) – 2.644(3)	2.397(7) – 2.633(3)	2.389(3) - 2.633(3)	2.377(4) - 2.624(3)	2.359(8) – 2.628(6)	2.236(3) - 2.478(3)	2.254(3) - 2.489(3)	2.247(4)- 2.474(4)	2.228(4)- 2.465(4)	2.221(4)- 2.453(4)	2.209(7)- 2.443(7)	2.190(6)- 2.445(7)
Dihedral angle / ° (COOM) vs C=C	9.3(7)	10.2(3)	10.4(3)	10.4(4)	10.0(5)	9.8(4)	10.0(9)	2.2(6) 11.7(2), 13.0(4)	1.6(8), 11.5(3), 12.6(5)	2.7(7), 12.3(3), 13.1(6)	24.9(8), 105.2(5), 148.1(3)	4.0(8), 12.0(2), 13.7(5)	2.8(18), 13.6(4), 14.5(9)	4.2(16), 11.6(5), 31.6(5)
Dihedral angle / ° (COOM) vs—Ph	25.4(2)	24.9(1)	25.4(1)	25.8(1)	25.8(2)	26.1(2)	26.3(4)	8.7(1), 15.6(1), 30.3(2)	7.9(2), 9.3(2), 28.9(2)	8.2(2), 14.9(2), 30.2(2)	30.6(2), 94.5(5),145 .9(2)	8.1(2), 16.1(2), 30.4(2)	8.6(3), 17.6(3), 31.0(4)	8.5(3), 16.0(3), 34.2(3)

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010 **Table S2.** Selected bond lengths (Å) of Ln = Eu 6 (Type I) and Ln = Er 12 (Type II) complexes.

Eu		E	r
Eu(1)-O(1)	2.633(3)	Er(1)-O(1)	2.265(5)
$Eu(1)-O(1)^{a}$	2.633(3)	Er(1)-O(2)	2.242(5)
$Eu(1)-O(1)^{b}$	2.633(3)	Er(1)-O(3)	2.302(4)
Eu(1)-O(1) ^c	2.443(3)	$Er(1)-O(3)^{a}$	2.465(4)
$Eu(1)-O(1)^{e}$	2.443(3)	Er(1)-O(4)	2.360(5)
Eu(1)-O(2)	2.389(3)	Er(1)-O(5)	2.228(4)
$Eu(1)-O(2)^{a}$	2.389(4)	Er(1)-O(6)	2.250(5)
Eu(1)Eu(1) ^d	3.872(2)	$\frac{\operatorname{Er}(1)}{\operatorname{Er}(1)^{\mathrm{a}}}$	4.107(2)

Symmetry code of **6**: a = -Y,+X-Y,+Z; b = -X+Y,-X,+Z; c = -X+Y,+Y,1/2+Z; d = +X,+X-Y,1/2+Z; e= -Y,-X,1/2+Z. Symmetry code of **12**: a = -X,1/2+Y,-Z.

Eu		Er	
$O(1)^{a}$ -Eu(1)-O(1)	65.26(9)	O(2)-Er(1)-O(1)	154.1(2)
$O(1)^{b}$ -Eu(1)-O(1)	65.26(8)	O(3)-Er(1)-O(1)	77.2(2)
$O(1)^{c}$ -Eu(1)-O(1)	124.75(9)	$O(3)^{a}$ -Er(1)-O(1)	131.7(2)
$O(1)^{d}$ -Eu(1)-O(1)	102.92(9)	O(4)-Er(1)-O(1)	77.8(2)
$O(1)^{e}$ -Eu(1)-O(1)	161.3(1)	O(5)-Er(1)-O(1)	92.6(2)
$O(1)^{d}$ -Eu(1)-O(1) ^c	71.1(1)	O(6)-Er(1)-O(1)	93.1(2)
O(2)-Eu(1)-O(1)	51.4(1)	O(3)-Er(1)-O(2)	76.8(2)
O(2)-Eu(1)-O(1) ^c	73.9(1)	$O(3)^{a}$ -Er(1)-O(2)	74.2(2)
$O(2)^{a}$ -Eu(1)-O(1)	116.1(1)	O(4)-Er(1)-O(2)	128.0(2)
$O(2)^{b}$ -Eu(1)-O(1)	80.7(1)	O(5)-Er(1)-O(2)	87.5(2)
O(2)-Eu(1)-O(1) ^e	140.3(1)	O(6)-Er(1)-O(2)	89.0(2)
$Eu(1)-O(1)-Eu(1)^{c}$	99.34(8)	$Er(1)-O(3)-Er(1)^{a}$	118.9(2)

Table S3. Selected bond angles (°) of Ln = Eu 6 (Type I) and Ln = Er 12 (Type II)complexes.

Symmetry code of **6**: a = -Y,+X-Y,+Z; b = -X+Y,-X,+Z; c = -X+Y,+Y,1/2+Z; d = +X,+X-Y,1/2+Z; e= -Y,-X,1/2+Z. Symmetry code of **12**: a = -X,1/2+Y,-Z.