Highly Porous and Monodisperse Magnetic Silica Beads

Prepared by a Green Templating Method

Sébastien Abramson, Clémentine Meiller, Patricia Beaunier, Vincent Dupuis, Laurent Perrigaud, Agnès Bée and Valérie Cabuil

Supplementary material (ESI) for Journal of Materials Chemistry

Fig. S1: Photograph of the MS beads series

Fig. S2 : DRIFT spectra of MA, MAS, and MS beads.

Fig. S3 : TEM images of microtome section of MAS beads

Fig. S4 : normalised UV-visible spectra of MeB in water and in HNO₃ aqueous solution, and of the supernatants after washing of the beads with HNO₃ aqueous solution.

Fig. S1: Photograph of the MS beads series (each sample is characterized by a different value of Φ_{Fe2O3} ; from left to right Φ_{Fe2O3} increases from 0 to 2.1%)

Fig. S2 : DRIFT spectra of MA (1), MAS (2) and MS (3) beads. (Φ_{Fe2O3} = 2.1%)

Fig. S3 : TEM images of microtome section of MAS beads (a) Φ_{Fe2O3} =0.06% ;

(b) $\Phi_{Fe2O3} = 0.96\%$

Fig. S4 : normalised UV-visible spectra of MeB in water and in 10^{-2} mol L⁻¹ HNO₃ aqueous solution, and of the supernatants after washing of the beads with 10^{-2} mol L⁻¹ HNO₃ aqueous solution.