Electronic Supplementary Information

Inducing Nanolayers-assembly of FePtDy 1D Superstructures and Its Induced Visible light Photocatalysis Effect for TiO₂

Fan Zhang, Ming Wen^{*}, Ming-zhu Cheng, Qing-sheng Wu^{*}, and Xiangguo Meng

Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, China

1. Synthesis of TiO₂ nanoparticles

Preparation of TiO₂ nanoparticles was carried out as following:^{2b} a parental solution of 5 drops of concentrated HNO₃ and 60ml deionized water was prepared. Then, 10 mL acetic acid was added to 10 mL tetra-*n*-butyl titanate (Ti(OC₄H₉)₄) and the resulting solution was added drop wise into the above solution under vigorous magnetic stirring. The reaction was carried out at room temperature for 12h. The semitransparent mixture was sealed in a 100 mL Teflon-lined stainless steel autoclave after filtration, which was filled up to 80% of its total volume, then were calcined in a muffle furnace in air at 160 for 24 h. TiO₂ nanoparticles can be obtained finally after grinding.

2. SEM images of as-obtained FePtDy nanoalloys morphologies

Figure S1. SEM images of FePtDy nanoalloys: A) $Fe_{40}Pt_{60}$ nanoparticles; B) $Fe_{40}Pt_{58}Dy_2$ nanoparticles; C,D) nanolayers-assemblied $Fe_{38}Pt_{58}Dy_4$ 1D superstructures; E,F) nanolayers-assemblied $Fe_{39}Pt_{53}Dy_8$ 1D superstructures.

3. Enhanced effect on photocatalytic activity of TiO₂ by simply mixing with as-designed FePtDy nanoalloys.

Figure S2 UV-vis absorption spectra for solution separated from $p-25 \text{ TiO}_2$ nanoparticles suspensions under solar-light (A) and UV-filter visible-light (B) irradiated for various periods.

Figure S3. UV-vis absorption spectra for solution separated from $TiO_2 + FePtDy$ nanoparticles suspensions irradiated for various periods under solar light irradiation: A) $TiO_2+Fe_{40}Pt_{60}$ nanoparticles; B) $TiO_2+Fe_{40}Pt_{58}Dy_2$ nanoparticles; C) $TiO_2+Fe_{41}Pt_{56}Dy_3$ nanoparticles; D) $TiO_2+Fe_{38}Pt_{58}Dy_4$ nanoparticles; E) $TiO_2+Fe_{40}Pt_{49}Dy_{11}$ nanoparticles; F) $TiO_2+Fe_{39}Pt_{53}Dy_8$ nanoparticles; G) $TiO_2+Fe_{38}Pt_{58}Dy_4$ 1D superstructures; H) $TiO_2+Fe_{40}Pt_{49}Dy_{11}1D$ superstructures; I) $TiO_2+Fe_{39}Pt_{53}Dy_8$ 1D superstructures; J) TiO_2+Pt nanoparticles

Figure S4. UV-vis absorption spectra under solar-light (A) and UV-filter visible-light irradiation (B): a) $Fe_{38}Pt_{58}Dy_4$ nanoparticles; b) p-25 TiO₂ nanoparticles; c) TiO₂ nanoparticles; d)TiO₂+Fe₄₀Pt₆₀ nanoparticles; e) TiO₂+Fe₄₀Pt₅₈Dy₂ nanoparticles; f) TiO₂+Fe₄₁Pt₅₆Dy₃ nanoparticles; g) TiO₂+Fe₃₈Pt₅₈Dy₄ nanoparticles; h) TiO₂+Fe₃₈Pt₅₈Dy₄ 1D superstructures; i) TiO₂+ Fe₄₀Pt₄₉Dy₁₁ 1D superstructures; j) TiO₂+Fe₃₉Pt₅₃Dy₈ 1D superstructures; k) TiO₂+Pt nanoparticles.

Figure S5. UV-vis absorption spectra for solution separated from TiO_2 +FePtDy nanoparticles suspensions irradiated for various periods under UV-filter visible-light irradiation: A) TiO_2 +Fe₄₀Pt₆₀ nanoparticles; B) TiO_2 +Fe₄₀Pt₅₈Dy₂ nanoparticles; C) TiO_2 +Fe₄₁Pt₅₆Dy₃ nanoparticles; D) TiO_2 +Fe₃₈Pt₅₈Dy₄ nanoparticles; E) TiO_2 +Fe₄₀Pt₄₉Dy₁₁ nanoparticles; F) TiO_2 +Fe₃₉Pt₅₃Dy₈ nanoparticles; G) TiO_2 +Fe₃₈Pt₅₈Dy₄ 1D superstructures; H) TiO_2 +Fe₄₀Pt₄₉Dy₁₁ 1D superstructures; I) TiO_2 +Fe₃₉Pt₅₃Dy₈ 1D superstructures; J) TiO_2 +Pt nanoparticles