Supplementary Information

A Micro/mesoporous Aluminosilicate: Key Factors Affecting Framework Crystallization during Steam-assisted Synthesis and Its Catalytic Property

Jian Zhou, Zile Hua, Jinjin Zhao, Zhe Gao, Shaozhong Zeng and Jianlin Shi*

State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No.1295 Ding-xi Road, Shanghai, 200050, P.R.China

Sample	Humidity	Drying Temperature / °C	Molar ratio of TEA : SiO ₂	Steaming time / h
c-TUD-1(H _{40%})	40%	90	1:1	12
c-TUD-1(H _{50%})	50%	90	1:1	12
c-TUD-1(H _{100%})	100%	90	1:1	12
c-TUD-1(H _s)	Supersaturated	90	1:1	12
c-TUD-1(D ₈₀)	100%	80	1:1	12
c-TUD-1(D ₉₀)	100%	90	1:1	12
c-TUD-1(D ₁₀₀)	100%	100	1:1	12
c-TUD-1(D ₁₂₀)	100%	120	1:1	12
c-TUD-1(A ₀)	100%	90	0:1	12
c-TUD-1(A _{0.5})	100%	90	0.5:1	12
c-TUD-1(A ₁)	100%	90	1:1	12

 Table S1. The experimental parameters of every sample.

Supplementary Material (ESI) for Journal of Materials Chemistry
This journal is (c) The Royal Society of Chemistry 2010

c-TUD-1(A ₂)	100%	90	2:1	12
c-TUD-1(T ₃)	100%	90	1:1	3
c-TUD-1(T ₆)	100%	90	1:1	6
c-TUD-1(T ₁₂)	100%	90	1:1	12
c-TUD-1(T ₂₄)	100%	90	1:1	24
c-TUD-1(T ₆₀)	100%	90	1:1	60

Fig. S1. XRD patterns of c-TUD-1(H_n) series samples prepared by steaming under different humidities.

Table S2. Texture properties of samples after steaming under different humidity.

Sample	S_{BET}/m^2g^{-1}	$S_{external}/m^2g^{-1}$	V _{BJH} /cm ³ g ⁻¹
c-TUD-1(H _{40%})	537	500	0.89
c-TUD-1(H _{50%})	477	434	0.94
c-TUD-1(H _{100%})	440	365	0.90
c-TUD-1(H _s)	386	310	0.87

Fig. S2. N₂ adsorption/desorption isotherms and their corresponding pore size distributions of c-TUD-1(H_n) series samples. From bottom to top, the patterns represent samples c-TUD-1(H_{40%}) (\bullet), H_{50%} (\bullet), H_{100%} (\bullet), H_s (\bigstar), respectively. The curves of samples (a-d) are vertically offset by 200, 650 and 1000 cm⁻³g⁻¹, respectively. Pore size distribution is corresponded to the adsorption/desorption isotherms with the same order.

Fig. S3. XRD patterns of c-TUD-1(T_n) series samples prepared by steam-assisted crystallization

for different time periods of steaming.

Figure S4. N₂ adsorption/desorption isotherms and their corresponding pore size distributions of c-TUD-1(T_n) series samples. From bottom to top, the patterns represent samples of c-TUD-1(T₃) (•), c-TUD-1(T₆) (•), c-TUD-1(T₁₂) (•), c-TUD-1(T₂₄) (★) and c-TUD-1(T₆₀) (•), respectively. The curves of samples are vertically offset by 150, 450, 900 and 1300 cm⁻³g⁻¹, respectively. Pore size distribution curves are corresponding to the adsorption/desorption isotherms with the same order.