Towards Materials With Reversible Oxidation

and Tuneable Colours Using Heterocyclic

Conjugated Azomethines

Stéphane Dufresne, Andréanne Bolduc, and W. G. Skene*

Centre for Self-Assembled Chemical Structures

Département de Chimie, Pavillon J. A. Bombardier, Université de Montréal, CP 6128, succ.

Centre-ville, Montréal, Québec, CANADA, H3C 3J7.

* corresponding authors: <u>w.skene@umontreal.ca;</u>

Table of contents

Table of contents	
Figure 1. Absorbance (black) and fluorescence (red) of 2 in dichloromethane	
Figure 2. Absorbance (black) and fluorescence (red) of 4 in dichloromethane	
Figure 3. Absorbance (black) and fluorescence (red) of 5 in dichloromethane	
Figure 4. Absorbance (black) and fluorescence (red) of 6 in dichloromethane	
Figure 5. Absorbance (black) and fluorescence (red) of 7 in dichloromethane	5
Figure 6. Cyclic voltammogram of 2 with 0.1M TBAPF ₆ in dichloromethane	6
Figure 6. Cyclic voltammogram of 3 with 0.1M TBAPF ₆ in dichloromethane	6
Figure 7. Cyclic voltammogram of 4 with 0.1M TBAPF ₆ in dichloromethane	7
Figure 8. Cyclic voltammogram of 5 with 0.1M TBAPF ₆ in dichloromethane	7
Figure 9. Cyclic voltammogram of 6 with 0.1M TBAPF ₆ in dichloromethane	
Figure 11. ¹ H NMR spectra of 2 in deuterated acetone	9
Figure 12. ¹³ C NMR spectra of 2 in deuterated acetone	
Figure 13. ¹ H NMR spectra of 4 in deuterated acetone	11
Figure 14. ¹³ C NMR spectra of 4 in deuterated acetone	
Figure 15. ¹ H NMR spectra of 5 in deuterated acetone	
Figure 16. ¹³ C NMR spectra of 5 in deuterated acetone	
Figure 17. ¹ H NMR spectra of 6 in deuterated acetone	15
Figure 18. ¹³ C NMR spectra of 6 in deuterated acetone	
Figure 19. ¹ H NMR spectra of 7 in deuterated acetone	
Figure 20. ¹³ C NMR spectra of 7 in deuterated acetone	

Figure 1. Absorbance (black) and fluorescence (red) of 2 in dichloromethane.

Figure 2. Absorbance (black) and fluorescence (red) of 4 in dichloromethane.

Figure 3. Absorbance (black) and fluorescence (red) of 5 in dichloromethane.

Figure 4. Absorbance (black) and fluorescence (red) of 6 in dichloromethane.

Figure 5. Absorbance (black) and fluorescence (red) of 7 in dichloromethane.

Figure 6. Cyclic voltammogram of 2 with 0.1M TBAPF₆ in dichloromethane.

Figure 7. Cyclic voltammogram of 3 with 0.1M TBAPF₆ in dichloromethane.

Figure 8. Cyclic voltammogram of 4 with 0.1M TBAPF₆ in dichloromethane.

Figure 9. Cyclic voltammogram of 5 with 0.1M TBAPF₆ in dichloromethane.

Figure 10. Cyclic voltammogram of 6 with 0.1M TBAPF₆ in dichloromethane.

Figure 11. Cyclic voltammogram of 7 with 0.1M TBAPF₆ in dichloromethane.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010

