Supplementary Information

Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries

Zhongxue Chen^a, Yuliang Cao,*^{ab} Jiangfeng Qian,^a Xinping Ai^a and Hanxi Yang*^a

^a Hubei Key Lab. of Electrochemical Power Sources, College of Chemistry and Molecular Science,

Wuhan University Wuhan 430072, (P. R. China). Tel: 86-027-68754526;

E-mail: <u>hxyang@whu.edu.cn</u>

^b Pacific Northwest National Laboratory, Richland Washington 99352, USA.

E-mail: <u>ylcao@whu.edu.cn</u>

Fig. S1 Electrochemical cyclic performance of the $SiC_{30}@Sn_{60}@C_{10}$ composite at a constant current of 100 mA g⁻¹. The composite exhibits a reversible capacity of 431 mA h g⁻¹ up to 300 cycles (80.3% of the initial capacity).

This journal is © The Royal Society of Chemistry 2010

Table S1 Comparison of the electrochemical performance of the Sn composite in this work with

Ref.	Sample	Method	Testing	Initial	Initial	Capacity	Capacity
			voltage	coulombic	reversib	retention	attenuation
			window	efficiency	le	after cycling	rate (%)
			$(vs. Li^+/Li)$	(%)	capacity		
					mA h g ⁻¹		per cycle
Ours	SiC ₃₀ @Sn ₆₀ @	multiBall	0.01~1.5V	50	537	$490(100^{\text{th}})$	0.087
	C ₁₀	milling				431(300 th)	0.066
[36]	Sn-C	Sol-gel&	0.02~1.5V	~40	450	~450(100 th)	0
		calcination					
[38]	Sn@C	Hydrothermal	0.005~2.0		~620	311(200 th)	0.25
		synthesis	V				
[35]	Sn-C	Sol-gel&	0.01~1.5V	~70	350	$\sim 500(200^{\text{th}})$	0
		calcination					
[44]	Sn@C	Hydrothermal	0~1.5V	86	681	$664(50^{\text{th}})$	0.05
		synthesis					
[45]	Sn@CNT	CVD	0.005~3.0	67.5	716	$\sim 250(80^{\text{th}})$	0.8
[]	~~~~~~	method	V				
	Sn@C@CNT	Solid-state	0.01-3.0V	77.8	526	474(80 th)	0.12
		pyrolysis				~ /	
[46]	Sn–Co–C	Ball milling	0.01~1.5V	~64	450	270(100 th)	0.4
[47]	Sn–Co–C	Alloyed	0.005~1.2		~460	$\sim 380(100^{\text{th}})$	0.17
		mechanically	V				
[48]	Sn/C	Modified	0~3.0V	64.8	810	508(100 th)	0.37
		Hummer's					
		method					
[31]	SnCo/CNT	Chemical	0.02~1.5V	~58	506	424(30 th)	0.54
		reduction					

those reported in the literatures

References

- 31 Ke, F. S. L. Huang, H. H. Jiang, H. B. Wei, F. Z. Yang and S. G. Sun, *Electrochem.Commun.*, 2007, 9, 228.
- 35 G. Derrien, J. Hassoun, S. Panero and B. Scrosati, Adv. Mater., 2007, 19, 2336.
- 36 J. Hassoun, G. Derrien, S. Panero and B. Scrosati, Adv. Mater., 2008, 20, 3169.
- 38 D. Deng and J. Y. Lee, Angew. Chem. Int. Ed., 2009, 48, 1660.
- 44 M. J. Noh, Y. J. Kwon, H. J. Lee, J. Cho, Y. J. Kim and M. G. Kim, *Chem. Mater.*, 2005, 17, 1926.
- 45 Y. Wang, M. H. Wu, Z. Jiao and J. Y. Lee, Chem. Mater. 2009, 21, 3210.
- 46 J. Hassoun, G. Mulas, S. Panero and B. Scrosati, *Electrochem. Commun.* 2007, 9, 2075.
- 47 P. P. Ferguson, M. L. Martine, R. A. Dunlap and J. R. Dahn, *Electrochim. Acta* 2009, 54, 4534.

This journal is $\ensuremath{\mathbb O}$ The Royal Society of Chemistry 2010

48 G. X. Wang, B. Wang, X. L. Wang, J. S. Park, S. X. Dou, H. J. Ahnb and K. W. Kim, J. Mater. Chem. 2009, 19, 8378.