The effect of compactness on the carbothermal conversion of interpenetrating metal oxide / resorcinol-formaldehyde nanoparticle networks to porous metals and carbides

Nicholas Leventis^{*}, NaveenChandrasekaran, Anand G. Sadekar, SudhirMulik, and CharikliaSotiriou-Leventis^{*}

Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, U.S.A. (<u>leventis@mst.edu</u>; cslevent@mst.edu)

Electronic Supplementary Information

- 1. **Figure S.1.**Solids ¹³C NMR of representative native and X-RF-MOx systems (cases shown, M: Sn, Cu, Hf)
- 2. **Figure S.2.** XRD and EDAX data as a function of pyrolysis temperature (under Ar) for the smeltable RF-MOx systems (M: Fe, Co, Ni, Cu) in their native aerogel (top), xerogel (middle) and X-aerogel (bottom) forms
- 3. **Figure S.3.**XRD data as a function of the pyrolysis temperature (under Ar) for the RF-MOxsystems convertible to carbides (M: Ti, Hf); Top: native aerogels; Middle: xerogels; Bottom: X-aerogels
- 4. **Figure S.4.**XRD data as a function of the pyrolysis temperature (under Ar) for RF-YOx and RF-DyOx; Top: native aerogels; Middle: xerogels; Bottom: X-aerogels
- 5. **Tables S.1-S.10.**Property evolution upon pyrolysis of the RF-MOx systems (M: Fe, Co, Ni, Sn, Cu, Cr, Ti, Hf, Y, Dy)
- 6. **Table S.11.**Quantitative phase analysis (% w/w by XRD) of smeltable metal oxide-carbon black mixtures (1:6 mol/mol) as a function of heating temperature under Ar
- 7. **Table S.12.**Quantitative phase analysis (% w/w by XRD) of carbide-convertible metal oxide / carbon black mixtures (1:6 mol/mol) as a function of heating temperature under Ar

Figure S.1. Solids ¹³C NMR of representative native and X-RF-MOx systems (cases shown, M: Sn, Cu, Hf)

Figure S.2. XRD and EDS data as a function of pyrolysis temperature (under Ar) for the smeltable RF-MOx systems (M: Fe, Co, Ni, Cu) in their native aerogel (top), xerogel (middle) and X-aerogel (bottom) forms

S-5

Figure S.4. XRD data as a function of the pyrolysis temperature (under Ar) for RF-YOx and RF-DyOx; Top: native aerogels; Middle: xerogels; Bottom: X-aerogels

mentary Material (ESI) for Journal of Materials Chemistry	urnal is (c) The Royal Society of Chemistry 2010
Supplementa	This journal

RF-FeOx system
[e]
Ŧ
of
sis
oly
pyrc
uodn
lution
evo
erty
Prop
Table S.1.

sample	diameter (cm) ^a	shrinkage (%) ^{a,b}	bulk density, $ ho_{ m b} ({ m g cm^3})^{ { m a}}$	skeletal density, ρ_{s} (g cm ⁻³) ^c	porosity, <i>II</i> (% void space)	BET surface area, <i>σ</i> (m ² g ⁻¹)	average pore diameter (nm) ^d	particle radius, r (nm) ^e
n-RF-FeO) RT	x 0.946±0.01	13.2±1.31	0.047±0.001	2.86±0.12	98	298	33.8 [26.2]	3.5
800°C	0.52 ± 0.01	48.2±0.28	0.15 ± 0.05	$3.74{\pm}0.23$	95.9	141	54.9 [55.5]	5.6
1000°C		5.40±0.27		130	57.6 [63.7]	4.3		
Xero-RF-F RT	reOx 0.38±0.02	63.4±0.49	1.00±0.04	1.81±0.01	45	184	4.8 [3.2]	0.6
800°C	0.32±0.01	73.2±0.12	1.28±0.01	$3.54{\pm}0.30$	64.1	51	5.2 [7.4]	16.6
1000°C	0.22±0.01	78.8±0.32	1.73 ± 0.18	4.89±0.28	66.3	82.5	5.8 [6.4]	7.4
X-RF-FeO RT	× 1.00±0.03	6.16±0.58	0.42±0.01	1.42±0.01	17	80	28.8 [33.1]	26.4
800°C 1000°C	0.49 ± 0.01 0.48 ± 0.02	52.8 ± 0.22 54.0 ± 0.28	0.16 ± 0.02 0.192 ± 0.003	4.15 ± 0.44 4.40 ± 0.40	96.1 95.4	174 157	40.8 [42.9] 45.7 [65.9]	4.2 4.3
anticontranticonteconteconteconteconteconteconteconte			b cli : 1 -		. Г – Г – Г – Г – Г – Г – Г – Г – Г – Г			

^a. Average of 3 samples. (Mold diameter: 1.04 cm.) ^b. Shrinkage = 100 × (mold diameter– sample diameter)/(mold diameter). ^c. Single sample, average of 50 measurements. ^d. By the BJH-desorption method; in brackets: width at half maximum in nm ^e. Calculated via $r = 3/\rho_s \sigma$.

SI) for Journal of Materials Chemistry	ll Society of Chemistry 2010
Supplementary Material (ESI) for	lhis journal is (c) The Royal Socie

system
ő
F-Co
ž
f the
sis o
roly
p.
uodn
lution
evo
perty
Proj
Table S.2.

sample	diameter (cm) ^a	shrinkage (%) ^{a,b}	bulk density, $\rho_{\rm b}$ (g cm ⁻³) ^a	skeletal density, ρ_{s} (g cm ⁻³) ^c	porosity, Π (% void space)	BET surface area, σ $(m^2 g^{-1})$	average pore diameter (nm) ^d	particle radius, r (nm) ^e
n-RF-CoO		NO IN LEADOND PROVINCE PROVINCE INCOME. LEADOND PROVINCE PROVINCE INCOME.	example and constrained and and and and and and and and and an	ON THE END OF DEPARTMENT OF DEPARTMENT OF THE OPPORTUNITY OF T	NEO DE CERCENCIEN DE CENCENCIENCE EN CORCERCIENCE EN CONCERCIENCE EN CONCERCE EN CONCERCE EN CONCERCE EN CONCERCIENCE EN CONCERCERCERCE EN CONCERCERCERCE EN CONCERCERCE EN CONCERCERCERCE EN CONCERCERCERCE EN CONCERCERCERCERCERCERCERCERCERCERCERCERCERC	NUME CENTRO INFO INFO INC. INFO INFO INC. INFO INC. INFO INC.		
RT	0.783 ± 0.024	21.6 ± 2.51	0.082 ± 0.001	2.34±0.19	76	143	36.3 [45.3]	9.0
800°C	$0.64{\pm}0.03$	38.4±0.03	0.188 ± 0.001	3.71±0.81	95.85	554.7	28.2 [31.8]	1.5
1000°C	0.56 ± 0.02	46.1±0.04	$0.28 {\pm} 0.08$	3.80±0.46	94.3	276.1	23.4 [29.8]	2.9
Xero-RF-C RT	2 <mark>00x</mark> 0.43±0.04	58.6±0.53	0.81±0.12	1.93±0.04	35 123	4.8 [3.5]	12.6	
800°C	0.40±0.01	61.5±0.23	1.53 ± 0.08	3.83 ± 0.90	59.8	46.8	5.4 [4.8]	16.7
1000°C	$0.34{\pm}0.03$	67.3±0.17	1.89±0.22	3.98±0.24	52.8	41.2	5.1 [6.4]	18.3
X-RF-C ₀ O RT	x 0.91±0.02	6.16±0.58	0.37±0.03	1.42±0.05	71	52	22.3 [26.2]	40.9
800°C	0.61 ± 0.01	41.3 ±0.22	0.327 ± 0.002	3.14±0.17	89.5	108	5.6 [5.4]	8.8
1000°C	$0.64{\pm}0.02$	38.4±0.28	0.48 ± 0.01	4.78±0.01	6.68	31	7.1 [6.7]	20.2
D	•		· · ·		-	•••••••••••••••••••••••••••••••••••••••	- - - - - - - - - - - - - - - - - - -	

^a. Average of 3 samples. (Mold diameter: 1.04 cm.). ^b. Shrinkage = $100 \times (mold diameter - sample diameter)/(mold diameter). ^c. Single sample, average of 50 measurements. ^d. By the BJH-desorption method; in brackets: width at half maximum in nm ^e. Calculated via <math>r = 3/\rho_s \sigma$.

Aaterial (ESI) for Journal of Materials Chemistry) The Royal Society of Chemistry 2010
Supplementary Material (ES	This journal is (c) The Royal

ystem
of the RF-NiOx sy
ysis (
pyrol
uodn
evolution
Property
Table S.3.

sample	diameter (cm) ^a	shrinkage (%) ^{a,b}	bulk density, $ ho_{ m b}$ (g cm ⁻³) ^a	skeletal density, $\rho_{\rm s}$ (g cm ⁻³) ^c	porosity, <i>IT</i> (% void space)	BET surface area, σ (m ² g ⁻¹)	average pore diameter (nm) ^d	particle radius, r (nm) ^e
n-RF-NiO ₃ RT	0.69±0.015	29.7±1.25	0.059±0.003	2.59±0.13	86	309	22.9 [24.3]	3.7
800°C	0.57 ± 0.02	45.1±0.02	0.168 ± 0.005	4.04±0.92	96.0	303	17.9 [21.4]	2.5
1000°C	0.46 ± 0.02	55.7±0.03	0.22 ± 0.03	$3.94{\pm}0.57$	95.7	426	15.6 [18.4]	1.8
Xero-RF-N RT	iiOx 0.55±0.02	47.1±0.32	1.24±0.07	1.87±0.004 34				
800°C	0.51 ± 0.01	50.9±0.29	0.35 ± 0.03	2.27±0.06	84.8	42.7	5.3 [6.8]	31.0
1000°C	0.48 ± 0.01	53.8±0.18	0.58 ± 0.23	2.83±0.07	79.4 22.3		5.7 [6.3]	47.5
X-RF-NiO: RT	x 0.93±0.04	8.6±1.1	0.397±0.015	1.38±0.005	69	150	17.7 [15.0]	14.5
800°C	0.52 ± 0.03	50 ±1.18	0.405±0.017	2.19±0.12	81.6	177	14.6 [17.2]	7.7
1000°C	0.54±0.02	48.07±0.37	0.32±0.02	2.71±0.03	88.0 	116	6.5 [7.1]	9.5
•			q /		-		- 	

^a. Average of 3 samples. (Mold diameter: 1.04 cm.) ^b. Shrinkage = $100 \times (mold diameter - sample diameter)/(mold diameter)$. ^c. Single sample, average of 50 measurements. ^d. By the BJH-desorption method; in brackets: width at half maximum in nm ^e. Calculated via $r = 3/\rho_s \sigma$.

sample	diameter (cm) ^a	shrinkage (%) ^{a,b}	bulk density, $ ho_{ m b} ({ m g cm^3})^{ m a}$	skeletal density, $\rho_{\rm s}$ (g cm ⁻³) ^c	porosity, II (% void space)	BET surface area, σ (m ² g ⁻¹)	average pore diameter (nm) ^d	particle radius, r (nm) °
n-RF-SnOx RT	0.756±0.005	24.3±0.57	0.135±0.031	2.58±0.13	95	147	37.1 [41.4]	7.9
800°C	0.59 ± 0.01	43.2±0.33	0.158 ± 0.08	3.85±0.25	95.8	722	22.8 [31.4]	1.1
1000°C	0.62±0.07	44.4±0.23	0.185 ± 0.01	3.70±0.06	96.1	548	26.3 [38.2]	1.5
Xero-RF-Sı RT	nOx 0.37±0.03	64.4±0.58	1.15±0.08 1	.85±0.02 35	6			
800°C	0.32±0.01	69.2±0.16	1.73 ± 0.04	1.96 ± 0.08	10.5	176	3.4 [4.7]	8.7
1000°C	0.30±0.06	71.1±0.44	1.41 ± 0.18	$2.64{\pm}0.20$	46.6	147	5.9 [7.8]	Τ.Τ
X-RF-SnO ₃ RT	x 0.86±0.01	13.8±0.42	0.31±0.01	1.27±0.004	LL	60 3	.6 [34.7] 39.3	
800°C	0.63 ± 0.01	39.4 ± 0.12	$0.48{\pm}0.04$	2.90±0.12	84.5	6.61	38.2 [42.4]	4.51
1000°C	0.64±0.02	38.4±0.18	0.595±0.002	$3.78{\pm}0.08$	87.0			

Table S.4. Property evolution upon pyrolysis of the RF-SnOx system

^a. Average of 3 samples. (Mold diameter: 1.04 cm.) ^b. Shrinkage = $100 \times$ (mold diameter- sample diameter)/(mold diameter). ^c. Single sample, average of 50 measurements. ^d. By the BJH-desorption method; in brackets: width at half maximum in nm ^e. Calculated via $r = 3/\rho_s \sigma$.

0 III O III O

ntary Material (ESI) for Journal of Materials Chemistry	al is (c) The Royal Society of Chemistry 2010
Supplementary Ma	This journal is (c) T

x system
RF-CuC
of the
lysis c
pyrol
npon
evolution
Property
Table S.5.

sample	diameter (cm) ^a	shrinkage (%) ^{a,b}	bulk density, $ ho_{ m b}$ (g cm ⁻³) ^a	skeletal density, ρ_{s} (g cm ⁻³) ^c	porosity, <i>IT</i> (% void space)	BET surface area, σ (m ² g ⁻¹)	average pore diameter (nm) ^d	particle radius, r (nm) ^e
n-RF-CuO RT	x 0.903±0.021	16.3±1.92	0.083±0.009	2.65±0.14	86	189	43.6 [49.6]	6.0
800°C	0.66 ± 0.03	36.5±0.15	0.112 ± 0.08	3.6±0.35	96.8	183	33.7 [40.7]	4.6
1000°C	0.64 ± 0.02	38.4±0.21	0.191 ± 0.006	4.80±0.8	96.0	175	47.8 [33.6]	3.6
Xero-RF-C RT	uOx 0.496±0.055	52.3±1.2	1.33±0.009	2.01±0.29	34	159	4.7 [3.2]	9.4
800°C	0.29 ± 0.03	72.1±0.14	1.13±0.01	3.81±0.13	70.3	62	5.3 [5.8]	12.7
1000°C	0.31 ± 0.02	70.2±0.27	1.42±0.22	3.93±0.17	63.8	55	4.7 [5.3]	13.8
X-RF-CuO RT (x 0.97±0.02	10.5±1.96	0.42±0.05	1.37 ± 0.003	71	21	38.9 [45.2]	30.8
800°C	0.41 ± 0.04	60.5±0.18	$0.694{\pm}0.002$	2.40±0.09	80.5	54	48.9 [51.6]	23.1
1000°C	0.39±0.02	62.5±0.24	0.75±0.013	2.52±0.07	86.4	79 47.8	[49.7] 15.1	
***************************************								THE AREA AREA AREA AREA AREA AREA AREA AR

^a. Average of 3 samples. (Mold diameter: 1.04 cm.) ^b. Shrinkage = $100 \times (mold diameter- sample diameter)/(mold diameter). ^c. Single sample, average of 50 measurements. ^d. By the BJH-desorption method; in brackets: width at half maximum in nm ^c. Calculated via <math>r = 3/\rho_s \sigma$.

Aaterial (ESI) for Journal of Materials Chemistry) The Royal Society of Chemistry 2010
Supplementary Material (ES	This journal is (c) The Royal

ystem
is of the RF-CrOx s
n pyrolys
evolution upor
Property
Table S.6.

sample	diameter (cm) ^a	shrinkage (%) ^{a,b}	bulk density, $\rho_{\rm b} ({\rm g cm^3})^{\rm a}$	skeletal density, ρ_{s} (g cm ⁻³) ^c	porosity, 17(% void space)	BET surface area, σ (m ² g ⁻¹)	average pore diameter (nm) ^d	particle radius, r (nm) ^e
n-RF-CrC RT)x 0.89±0.02	11.3±1.52	0.108±0.005	2.42±0.01	96	472	23.9 [17.1]	2.6
800°C	0.50 ± 0.01	52.0±1.15	0.225 ± 0.013	3.08±0.05	93	618	17.9 [22.1]	1.6
1400°C	$0.48{\pm}0.04$	53.8±0.32	$0.284{\pm}0.008$	2.51 ± 0.04	89	252	10.8 [9.2]	4.7
Xero-RF- RT0.51±0.	CrOx .0150.9±1.05	1.16±0.072	1.78 ± 0.04	35 117	4.8 [1.9]	14.4		
X-RF-Cr(RT	0x 0.94±0.02	6.6±1.4	0.42±0.04	1.29±0.04	68	71	29.5 [17.9]	32.2
800°C	0.43 ± 0.02	<i>5</i> 7.0±0.15	0.39±0.01	2.78±0.05	86	368	3.81 [2.8]	2.9
1400°C	0.29±0.02	72.1±0.03	0.53±0.02	3.35±0.32	85	55 6.52 [:	5.8] 16.2	

^a. Average of 3 samples. (Mold diameter: 1.04 cm.) ^b. Shrinkage = $100 \times (mold diameter - sample diameter)/(mold diameter). ^c. Single sample, average of 50 measurements. ^d. By the BJH-desorption method; in brackets: width at half maximum in nm^e. Calculated via <math>r = 3/\rho_s \sigma$.

ntary Material (ESI) for Journal of Materials Chemistry	al is (c) The Royal Society of Chemistry 2010
Supplementary Ma	This journal is (c) T

en
ys1
ŝ
ô
Ē
щ
Ř
the
of
sis
foly
- S
ц С
õ
Ξ
on
Ξ
<u>o</u>
ъ
erty
b
PI
1
v
le
ab
Ε

sample	diameter (cm) ^a	shrinkage (%) ^{a,b}	bulk density, $ ho_{ m b}$ (g cm ⁻³) ^a	skeletal density, $\rho_{\rm s}$ (g cm ⁻³) ^c	porosity, <i>I</i> T(% void space)	BET surface area, σ $(m^2 g^{-1})$	average pore diameter (nm) ^d	particle radius, r (nm) °
n-RF-TiO) RT	x 0.86±0.01	12.6±0.57	0.091±0.001	2.64±0.11	96	230	23.9 [30.8]	4.9
800°C	0.37 ± 0.01	64.4±1.28	0.366±0.012	3.56±0.01	89.7	212	13.1 [17.6]	3.9
1400°C	$0.34{\pm}0.04$	67.3±0.35	0.413±0.135	3.62 ± 0.44	88.5	89	13.7 [18.7]	9.3
<mark>Xero-RF-</mark>] RT0.43±0.(FiOx 017	58.8±0.48	0.934±0.035	2.04±0.21	54	145 7.2 [4.8]10.1		
X-RF-TiO RT	x 0.91±0.01	9.0±1.2	0.414±0.009	1.34±0.82	69 69	30.1 [15.1]	32.4	
800°C	0.47±0.02	55.0±0.32	0.463±0.026	2.39±0.09	81.0	449	12.9 [13.8]	2.8
1400°C	0.31±0.12	70.2±0.12	0.59±0.01	4.85±0.15	87.7	55 5.7 [6.	9] 11.2	

^a. Average of 3 samples. (Mold diameter: 1.04 cm.) ^b. Shrinkage = $100 \times (mold diameter- sample diameter)/(mold diameter). ^c. Single sample, average of 50 measurements. ^d. By the BJH-desorption method; in brackets: width at half maximum in nm^c. Calculated via <math>r = 3/\rho_s \sigma$.

SI) for Journal of Materials Chemistry	ll Society of Chemistry 2010
Supplementary Material (ESI) for	lhis journal is (c) The Royal Socie

system	
RF-HfOx	
of the]	
VSIS	
ovrol	
t uodn	
evolution	
perty	
Prol	
Table S.8.	

sample	diameter (cm) ^a	shrinkage (%) ^{a,b}	bulk density, $ ho_{ m b}$ (g cm ⁻³) ^a	skeletal density, $\rho_{\rm s}$ (g cm ⁻³) ^c	porosity, $\Pi(\% \text{ void space})$	BET surface area, σ (m ² g ⁻¹)	average pore diameter (nm) ^d	particle radius, r (nm) ^e
n-RF-HfO RT	x 0.853±0.015	14.7±1.52	0.128±0.004	2.59±0.01	95	282	22.9 [37.9]	4.1
800°C	0.505 ± 0.029	$51.4{\pm}0.28$	0.312 ± 0.024	2.97±0.02	89.5	127	38.9[29.8]	8.0
1400°C	0.46 ± 0.01	55.7±0.14	0.346 ± 0.01	3.83±0.19	91.0	157	39.8 [20.9]	5.0
Xero-RF-I RT0.45±0.(IfOx 326 57.3±0.25	1.08±0.057	1.92±0.18	44 159	3.1 [1.0]	9.8		
X-RF-HfO RT	\X 0.926±0.025	7.3±1.5 0.44	42±0.006 1.42±0.	69 80	57	34.6 [32.7]3′	7.1	
800°C	0.415±0.007	60.0 ± 0.12	0.367±0.013	3.19 ± 0.02	89.0	358	22.4[26.8]	2.62
1400°C	0.32±0.04	69.2±0.32	$0.574{\pm}0.18$	4.26±0.13	87.0	1.63 12.1	432	

^a. Average of 3 samples. (Mold diameter: 1.04 cm.) ^b. Shrinkage = $100 \times (mold diameter- sample diameter)/(mold diameter). ^c. Single sample, average of 50 measurements. ^d. By the BJH-desorption method; in brackets: width at half maximum in nm^c. Calculated via <math>r = 3/\rho_s \sigma$.

sample	diameter (cm) ^a	shrinkage (%) ^{a,b}	bulk density, $ ho_{ m b}$ (g cm ⁻³) ^a	skeletal density, $\rho_{\rm s}$ (g cm ³) ^c	porosity, <i>II</i> (% void space)	BET surface area, σ $(m^2 g^{-1})$	average pore diameter (nm) ^d	particle radius, r (nm) °
n-RF-YOx RT	0.88±0.01	12.6±0.47	0.124±0.005	2.07±0.05 94		302 36.3 [32.1]	4.8	
800°C	$0.38 {\pm} 0.03$	65.3±0.58	0.307 ± 0.014	2.98±0.02	89.6	279	6.4 [4.8]	3.6
1400°C	0.32 ± 0.02	69.2±0.34	0.412 ± 0.18	2.70±0.12	84.7	88	7.8 [5.3]	12.6
Xero-RF-) RT	∕0x 0.38±0.019	63.2±0.78 1.1	12±0.11 1.98±0.	11 43122		6.0 [1.8]	12.4	
X-RF-YO ₃ RT	K 0.94±0.05	6.0±0.18	0.330±0.003	1.25±0.01	74	66	22.3 [24.1]	24.2
800°C	0.27±0.03	74.0±0.22	0.49 ± 0.005	4.19±0.09	88.2	555	22.1[19.8]	1.30
1400°C	0.205±0.18	80.2±0.46	0.68±0.12	5.58±0.54	87.8] .	

Table S.9. Property evolution upon pyrolysis of the RF-YOx system

^a. Average of 3 samples. (Mold diameter: 1.04 cm.) ^b. Shrinkage = $100 \times (mold diameter - sample diameter)/(mold diameter). ^c. Single sample, average of 50 measurements. ^d. By the BJH-desorption method; in brackets: width at half maximum in nm ^e. Calculated via <math>r = 3/\rho_s \sigma$.

ementary Material (ESI) for Journal of Materials Chemistry	ournal is (c) The Royal Society of Chemistry 2010
Supplement	This journa

Ox system
\geq
Ò.
ĽĽ.
2
f the
0
'sis
÷
n pyrc
odn 1
olution
N.
Property 6
Table S.10.

	meter 1) ^a	shrinkage (%) ^{a,b}	bulk density, $\rho_{\rm b} ({ m g cm^{-3}})^{a}$	skeletal density, ρ _s (g cm	porosity, $\Pi(\% \text{ voi})^3$, space)	BET surface area, σ $(m^2 g^{-1})$	average pore diameter (nm) ^d	particle radius, r (nm) ^e
5±0.05	nut en et nu	17.0±1.73	0.089±0.008	2.55±0.0	1 97	290	52.4 [32.8]	4.1
4±0.03		58.0±0.14	0.267±0.026	2.15 ± 0.0	6 87.8	310	27.8 [31.6]	4.8
)±0.01		62.5±0.32	0.384 ± 0.04	3.31±0.6	0 88.4	483	6.9 [7.4]	1.9
.,		50.6±0.82	1.17±0.0312.18±	E0.24 46.3	98 7.6 [5	5.3]14.0		
0.01	\mathbf{v}	5.80±1.7	$0.34{\pm}0.03$	1.49±0.01 6	8 132	45.7 [37.2] 1	5.2	
±0.04		63.0±1.2	0.42 ± 0.01	3.58±0.	13 88.0	0.01	[] ()	1
±0.03		74.0±0.2	0.67 ± 0.01	5.00±0.]	14 86.5	1.91()	-	
ever to rever one one to rever one one of		n na mana na na mana na	on and an statement of an and and and and and an and and an and and	a relacione de la carte de la carte de la relación de la carte	a na serie se rever a verse a serie e serie a serie serie e na esta na serie serie e a serie serie e a serie s	nar navad va konarva va navat va konarva va konarva konarva konarva konarva va navat va navat va navat va nava 	al de la restanción esta estan de la dela de la dela de la dela de la dela de	a borden and a relation and and an and and an and a relation and and and and and and and and and an

Average of 3 samples. (Mold diameter: 1.04 cm.) ^b. Shrinkage = $100 \times (mold diameter- sample diameter)/(mold diameter). ^c. Single sample, average of 50 measurements. ^d. By the BJH-desorption method; in brackets: width at half maximum in nm^e.$ Calculated via $r = 3/\rho_s \sigma$. a.

Table S.11.Quantitative phase analysis (% w/w by XRD) of smeltable metal oxidecarbon black mixtures (1:6 mol/mol) as a function of heating temperature under Ar (in parentheses: crystallite size, nm)

F	Room Tem	p. 400 °C	600 °C	<u>800 °C</u>	<u> </u>
$\frac{\text{Fe}_2\text{O}_3:\text{C} (1:6 \text{ mol})}{\frac{\text{Simple mixing}}{\text{Simple mixing}}}$	/mol)	1			
Fe ₂ O ₃ Mortar and pestle	100 (16.8)			100 (23)	100 (26.1)
Fe ₂ O ₃ Ball milling	100 (16.8)			100 (22.8)	100 (24.5)
Fe ₂ O ₃	100 (16.3)			100 (22.6)	100 (24.7)
CoO: C (1:6 mol/r	nol)				
Co ₂ O ₃ Mortar and pestle	100 (18.2)			100 (19.8)	100 (22.1)
$\begin{array}{c} Co_2O_3 \\ \alpha\text{-Co} \\ \textbf{Ball milling} \\ Co_2O_3 \\ \alpha\text{-Co} \end{array}$	100 (17.7)			100 (19.5)	15 (21.8) 85 (23.7)
	100 (17.8)			100 (24.2)	11.2 (26.5) 88.8(22.9)
NiO : C (1:6 mol/n	nol)				
NiO Nortar and postle	100 (17.85)			100 (18.9)	100 (22.4)
NiO Ball milling	100 (17.8)			100 (19.1)	100 (22.6)
NiO Ni	100 (17.8)			100 (18.5)	72.5 (23.2) 27.5 (21.4)
$SnO_2 : C(1:6 \text{ mol/r})$	nol)				
Simple mixing SnO_2 Mortar and nestle	100 (18.9)			100 (20.2)	100 (23.4)
SnO ₂ Ball milling	100 (18.4)			100 (20.4)	100 (22.8)
SnO ₂ Sn	100 (18.2)			100 (19.8)	84.5 (23.1) 15.5 (19.7)
CuO : C (1:6 mol/r	nol)				
CuO Cu Morton and postla	100 (26.2)	100 (28.5)	100 (28.4)	89.5 (30.4) 11.5 (19.7)	92.5 (32.6) 7.5 (21.3)
CuO Cu	100 (23.8)	100 (27.2)	100 (29.1)	77.0 (29.7) 23.0 (18.7)	66.0 (32.1) 34.0 (19.5)
CuO Cu	100 (22.9)	100 (25.5) 32.0 (16.4)	100 (26.4) 36.8 (18.4)	68.0 (27.8)	63.2 (28.1)

 Table S.12. Quantitative phase analysis (% w/w by XRD) of carbide-convertible metal oxide / carbon black mixtures (1:6 mol/mol) as a function of heating temperature under Ar (in parenthesis: crystallite size, nm)

 Room Temp

 1000 °C

 1100 °C

 1200 °C

 1400 °C

	Room Te	mp. 1000 °C	<u> </u>	<u> </u>	1400 °
$-Cr_2O_2 : C(1)$	6 mol/mol)				
Simple mixtures (not	tested)				
Mortar and pestle	,				
Cr ₂ O ₃	100 (26.8)			100 (29.1)	100 (35.8)
Ball milling					
Cr_2O_3	100 (25.4)			100 (27.9)	100 (34.2)
TiO ₂ : C (1:6 mol	/mol)				
Simple mixtures (no	t tested)				
Mortar and pestle	,				
TiO ₂	100 (21.8)			100 (26.6)	100 (28.4)
Ball milling					
TiO ₂	100 (21.6)			100 (27.2)	100 (27.9)
TiC					
HfO ₂ : C (1:6 mol	l/mol)				
Simple mixtures (not	tested)				
Mortar and pestle	,				
HfO ₂	100 (23.8)			100 (28.3)	100 (31.2)
Ball milling					
HfO ₂	100 (24.8)			100 (29.1)	100 (35.8)