Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010

# **Supporting Information For:**

# The Self-assembly and Photophysical Characterization of Tri(cyclopenta[def]phenanthrene)-derived Nanoparticles: A Template Free Synthesis of Hollow Colloidosomes.

# Shanmugam Easwaramoorthi,<sup>+</sup> Pyosang Kim, <sup>+</sup> Jong Min Lim,<sup>+</sup> Suhee Song,<sup>‡</sup> Honsuk Suh<sup>\*,‡</sup>, Jonathan L. Sessler,<sup>\*,¶+</sup> Dongho Kim<sup>\*,†</sup>

<sup>+</sup>Spectroscopy Laboratory for Functional *π*-electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea.

<sup>‡</sup>Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University,

Busan 609-030, Korea.

<sup>¶</sup>Department of Chemistry & Biochemistry, 1 University Station-A5300, The University of Texas at Austin, Austin, Texas 78712-0165, USA.

This journal is (c) The Royal Society of Chemistry 2010

| ]        | B3LYP/6-31G* level.                       |        |             |  |  |  |  |
|----------|-------------------------------------------|--------|-------------|--|--|--|--|
| Molecule | Major Transitions                         |        |             |  |  |  |  |
|          | Transition                                | Energy | Oscillator  |  |  |  |  |
|          |                                           | (eV)   | strength(f) |  |  |  |  |
| МСРР     | HOMO-0→LUMO+0(+70%), HOMO-1→LUMO+1(20%)   | 4.24   | 0.0734      |  |  |  |  |
|          | HOMO-0→LUMO+1 (51%), HOMO-1→LUMO+0 (26%)  | 4.94   | 0.3083      |  |  |  |  |
|          | HOMO-2→LUMO+1(45%), HOMO-0→LUMO+3(30%)    | 6.05   | 0.3068      |  |  |  |  |
|          | HOMO-4→LUMO+0(+43%), HOMO-2→LUMO+2(27%)   | 6.61   | 0.2324      |  |  |  |  |
|          | HOMO-0→LUMO+0(+51%), HOMO-0→LUMO+2(+18%), | 3.74   | 0.0676      |  |  |  |  |
|          | HOMO-2→LUMO+0(+13%), HOMO-2→LUMO+2(12%)   |        |             |  |  |  |  |
| di-MCPP  | HOMO-0→LUMO+2(+45%), HOMO-0→LUMO+0(28%),  | 3.93   | 0.3427      |  |  |  |  |
|          | HOMO-2→LUMO+0(+13%), HOMO-1→LUMO+1(5%)    |        |             |  |  |  |  |
|          | HOMO-1→LUMO+1(+66%), HOMO-0→LUMO+2(+9%),  | 4.34   | 1.1705      |  |  |  |  |
|          | HOMO-2→LUMO+0(6%)                         |        |             |  |  |  |  |
|          | HOMO-0→LUMO+0(+80%)                       | 3.63   | 1.1425      |  |  |  |  |
|          | HOMO-3→LUMO+1(+22%), HOMO-1→LUMO+2(+13%), | 4.25   | 0.4711      |  |  |  |  |
|          | HOMO-4→LUMO+1(+12%), HOMO-3→LUMO+2(+9%)   |        |             |  |  |  |  |
| tri-MCPP | HOMO-2→LUMO+3(+9%), HOMO-3→LUMO+4(+6%)    |        |             |  |  |  |  |
|          | HOMO-1→LUMO+3(6%), HOMO-2→LUMO+2(+6%)     |        |             |  |  |  |  |
|          | HOMO-3→LUMO+1(+42%), HOMO-4→LUMO+1(26%)   | 4.26   | 1.21        |  |  |  |  |
|          | HOMO-3→LUMO+4(+31%), HOMO-4→LUMO+4(+23%)  | 4.78   | 0.5087      |  |  |  |  |

**Table S1.**Electronic absorption properties of oligo-MCPPs calculated using Gaussian 03 at the<br/>B3LYP/6-31G\* level.

| This | journal is | (c) The Rov | yal Society | / of Chemistry | / 2010 |
|------|------------|-------------|-------------|----------------|--------|
|------|------------|-------------|-------------|----------------|--------|

|            | HOMO-0→LUMO+6(20%),HOMO-0→LUMO+5(6%)                           |      |        |
|------------|----------------------------------------------------------------|------|--------|
|            | HOMO-0→LUMO+0(+89%),                                           | 3.5  | 2.13   |
| tetra-MCPP | HOMO-5→LUMO+1(+32%), HOMO-4→LUMO+2(+27%)                       | 4.22 | 1.5455 |
|            | HOMO-0→LUMO+0(+87%)                                            | 3.94 | 2.9182 |
|            | HOMO-1→LUMO+4(+10%), HOMO-4→LUMO+0(+10%)                       | 4.21 | 1.7773 |
|            | HOMO-7→LUMO+3(9%), HOMO-2→LUMO+0(+7%)                          |      |        |
| penta-MCPP | HOMO-5→LUMO+1(+7%), HOMO-5→LUMO+2(+6%)                         |      |        |
|            | HOMO-7→LUMO+1(+6%)                                             |      |        |
|            | HOMO-1→LUMO+6(+33%), HOMO-0→LUMO+7(16%)<br>HOMO-4→LUMO+0(+14%) | 4.22 | 0.93   |



**Figure S1.** Plot of molar absorptivity at the low-energy absorption maximum vs. the inverse of the number of monomeric subunits.

This journal is (c) The Royal Society of Chemistry 2010

# **Optimized Geometries**

<u>MCPP</u>





<u>di-MCPP</u>



tri-MCPP





This journal is (c) The Royal Society of Chemistry 2010

## tetra-MCPP



# penta-MCPP



**Figure S2.** Optimized geometries (calculated at the B3LYP/6-31G\* level) of the **MCPP** oligomers considered in this study.



**Figure S3.** MO energy levels of the oligomers of this study calculated using Gaussian 03 at the B3LYP/6-31G\* level



**Figure S4.** MO diagrams of the oligomers of this study calculated using Gaussian 03 at the B3LYP/6-31G\* level.



Figure S5.Simulated absorption (black)) and the electronic transitions (blue) of various oligo-<br/>MCPPs obtained using Gaussian 03 at the B3LYP/6-31G\* level. Absorption spectra of the<br/>oligo-MCPPs (black) are given for comparison.



Figure S6. Change in the absorption spectra of tri-MCPP-N2 observed upon dilution with water



Figure S7.Dynamic light scattering spectra of nanostructures generated from tri-MCPP by using<br/>different water/THF ratios by volume



Figure S8.Particle size distribution determined from SEM images recorded using drop casted films<br/>of nanostructures formed from tri-MCPP by using different water/THF ratios by volume

This journal is (c) The Royal Society of Chemistry 2010



Figure S9.Representative SEM images of the aggregates formed from phenanthrene oligomers a)MCPP, b) di-MCPP, c) tetra-MCPP and d) penta-MCPP when subject to reprecipitation<br/>at 90%-10% water/THF ratios by volume



Figure S10.UV-visible absorption spectrum of tri-MCPP-N2 recorded at a concentration of ~5×10-5M-1 in a water/THF solvent mixture, 80:20 by volume