Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011 Mesoporous Nickel/Carbon Nanotube Hybrid Material Prepared by Electroless Deposition

Seong-Min Bak, Kwang-Heon Kim, Chang-Wook Lee and Kwang-Bum Kim\*

Department of Materials Science and Engineering, Yonsei University

134 Shinchon-dong, Seodaemoon-gu, Seoul 120-749 (Korea)

E-mail: kbkim@yonsei.ac.kr

## **Supporting Information**

S1. TG-DTA plots for Pd-modified CNTs synthesized with activation times of a) 5min. b) 10min.

c) 30min. and d) plot of Pd weight % for Pd-modified CNTs vs. activation time.







S2. a) FE-SEM and b) TEM images of Ni nanoparticles synthesized through homogeneous nucleation and growth in the solution with Pd catalyst-free CNTs.



S3. TEM image and direct line scanning analysis profile of the mesoporous Ni/CNT nano-hybrid via LLC templating with pore size of (a) 3.0 nm and (b) 3.5 nm.



S4. XRD patterns of mesoporous Ni(OH)<sub>2</sub>/CNT film electrodes.



S4 shows the typical XRD patterns of mesoporous Ni(OH)<sub>2</sub>/CNT film. The XRD patterns of the mesoporous Ni(OH)<sub>2</sub>/CNT film consists of peaks at 11.5°(003), 23.2°(006) and 47.3°(018). Except the substrate peaks, the XRD result corresponds to the  $\alpha$ -nickel hydroxide hydrate (JCPDS no.38-0715).<sup>1</sup>

S5. Electrochemical properties of nickel oxide based electrode materials prepared by various

synthesis routes in the literature.

| Material                                        | Synthetic method                                                                                                              | Specific capacity                                            | Rate capability                                      | Ref |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-----|
| Porous NiO                                      | LLC templating                                                                                                                | 146 F g <sup>-1</sup>                                        | Decrease of 58 %                                     | 2   |
|                                                 | electrodeposition                                                                                                             | at scan rate of 10 mV/sec                                    | (from 10 to 100 mV $s^{-1}$ )                        | 2   |
| Porous Ni                                       | LLC templating                                                                                                                | 50 F g <sup>-1</sup>                                         | _                                                    | 3   |
|                                                 | electrodeposition                                                                                                             | at scan rate of 50 mV/sec                                    |                                                      |     |
| Mesostructured                                  | Micelle template                                                                                                              |                                                              |                                                      |     |
| Ni(OH) <sub>2</sub> film                        | electrochemical                                                                                                               | -                                                            | -                                                    | 4   |
|                                                 | deposition                                                                                                                    |                                                              |                                                      |     |
| Nanoporous<br>Ni(OH) <sub>2</sub> film          | LLC templating electrodeposition                                                                                              | 578 F g <sup>-1</sup><br>at discharging current of<br>2.5 mA | Decrease of 23%<br>(from 2.5 to 10 mA)               | 5   |
| Mesoporous<br>NiO film                          | LLC templating electrodeposition                                                                                              | 590 F g <sup>-1</sup><br>at discharging current of<br>2.5 mA | Decrease of 31%<br>(from 2.5 to 10 mA)               | 6   |
| NiO loaded                                      | Impregmation                                                                                                                  | 230 F g <sup>-1</sup>                                        |                                                      |     |
| porous carbon                                   | (loading amount of                                                                                                            | at discharging current of                                    | -                                                    | 7   |
|                                                 | NiO: 1 wt.%)                                                                                                                  | 3 mA                                                         |                                                      |     |
| NiO loaded<br>activated carbon                  | Suspending the<br>activated-carbon in a<br>Ni(NO <sub>3</sub> ) <sub>2</sub> solution<br>(loading amount of<br>NiO: 4.3 wt.%) | 196 F g <sup>-1</sup><br>at discharging current of<br>10 mA  | Decrease of 3%<br>(from 10 to 80 mA)                 | 8   |
| Ni(OH) <sub>2</sub> /activated carbon composite | Physical mixing                                                                                                               | 540 F g <sup>-1</sup><br>at discharging current of<br>1 mA   | Decrease of 20%<br>(from 1 to 10 mA)                 | 9   |
| Ni(OH) <sub>2</sub> /activated carbon composite | Chemical<br>precipitation<br>(loading amount of<br>Ni(OH) <sub>2</sub> : 10wt.%)                                              | 260 F g <sup>-1</sup><br>at scan rate of 2 mV/sec            | Decrease of 14%<br>(from 2 to 8 mV s <sup>-1</sup> ) | 10  |
| NiO/MWCNT<br>composite                          | Chemical<br>impregnation<br>(loading amount of                                                                                | 240 F g <sup>-1</sup><br>at discharging current of<br>1mA    | -                                                    | 11  |

| Supplementary Material | (ESI) for Journal | of Materials | Chemistry |
|------------------------|-------------------|--------------|-----------|
|------------------------|-------------------|--------------|-----------|

This journal is (c) The Royal Society of Chemistry 2011

|                                                       | NiO: 14 mol%)                                                                                                             |                                                                                                                                       |                                                        |               |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|
| Ni(OH) <sub>2</sub> /MWCNT<br>composite               | Hydrothermal<br>synthesis<br>(loading amount of<br>Ni(OH) <sub>2</sub> : 10 wt.%)                                         | 432 F g <sup>-1</sup><br>at scan rate of 10 mVs <sup>-1</sup>                                                                         | Decrease of 73%<br>(from 10 to 500 mVs <sup>-1</sup> ) | 12            |
| Ni(OH) <sub>2</sub> /MWCNT<br>composite               | Chemical<br>precipitation<br>(loading amount of<br>Ni(OH) <sub>2</sub> : 70wt.%)                                          | 303 mAhg <sup>-1</sup><br>at discharging current of<br>0.1Ag <sup>-1</sup>                                                            | Decrease of 13%<br>(from 0.1 to 0.4 Ag <sup>-1</sup> ) | 13            |
| Mesoporous<br>Ni(OH) <sub>2</sub> /CNT<br>nano-hybrid | Electroless deposition<br>via selective<br>heterogeneous<br>nucleation and<br>growth<br>(loading amount of<br>Ni: 61wt.%) | 306 mAhg <sup>-1</sup><br>at scan rate of 10 mVs <sup>-1</sup><br>(equivalent to a<br>discharging current of<br>22 Ag <sup>-1</sup> ) | Decrease of 20%<br>(from 10 to 100 mVs <sup>-1</sup> ) | This<br>study |

S5 compares the electrochemical properties of the mesoporous Ni/CNT nano-hybrid in this study NiO, with mesoporous mesoporous  $Ni(OH)_2$ , NiO/activated carbon composite, Ni(OH)<sub>2</sub>/activated carbon composite, NiO/CNT composite and Ni(OH)<sub>2</sub>/CNT composite reported in the literature. Xia et al. reported the specific capacity of 303 mAh g<sup>-1</sup> for Ni(OH)<sub>2</sub> in a Ni(OH)<sub>2</sub>/CNT nano-composite at 0.1 A g<sup>-1</sup>, in which Ni(OH)<sub>2</sub> nanoparticles were dispersed on the CNTs with a Ni(OH)<sub>2</sub> loading of 70 wt.%.<sup>13</sup> Our mesoporous Ni(OH)<sub>2</sub>/CNT shows the specific capacity of 306 mAhg<sup>-1</sup> for Ni(OH)<sub>2</sub> in the hybrid at much higher charge/discharge rates. It demonstrates that the mesoporous Ni(OH)<sub>2</sub>/CNT nano-hybrid has a great potential as an electrode materials with excellent high rate capability for high rate battery applications.

## Reference

Supplementary Material (ESI) for Journal of Materials Chemistry

This journal is (c) The Royal Society of Chemistry 2011

- P. V. Kamath, J. Ismail, M. F. Ahmed, G. N. Subbannab, J. Gopalakrishnan, J. Mater. Chem. 1993, 3, 1285.
- V. Ganesh, V. Lakshminarayanan, S. Pitchumani, *Electrochemical and Solid-State Letters* 2005, 8, A308.
- 3. V. Ganesh, V. Lakshminarayanan, *Electrochimica Acta* 2004, 49, 3561.
- 4. Y. Tan, S. Srinivasan, K.S. Choi, J. Am. Chem. Soc. 2005, 127, 3596.
- D.D. Zhao, S.J. Bao, W.J. Zhou, H.L. Li, *Electrochemistry Communications* 2007. 9, 869.
- 6. D.D. Zhao, M.W. Xu, W.J. Zhou, J. Zhang, H.L. Li, *Electrochimica Acta* 2008, 53, 2699.
- 7. Y.L. Tai, H. Teng, Carbon 2004, 42, 2335.
- 8. G.H. Yuan, Z.H. Jiang, A. Aramata, Y.Z. Gao, Carbon 2005, 43, 2913.
- 9. J.H. Park, O.O. Park, K.H. Shin, C.S. Jin, J.H. Kim, *Electrochemical and Solid-State Letters* 2002, **5**, H7.
- Q. Huang, X. Wang, J. Li, C. Dai, S. Gamboa, P.J. Sebastian, *J. Power Sources* 2007, 164, 425.
- 11. C.T. Hsieh, Y.W. Chou, W.Y. Chen, J. Solid State Electrochem 2008, 12, 663.
- 12. C.C. Liu, Y.S. Lee, Y.J. Kim, I.C. Song, J.H. Kim, Synthetic Metals 2009, 159, 2009.
- 13. Y.G. Wang, L.Yu, Y.Y. Xia, J. Electrochem. Soc. 2006, 153, A743.