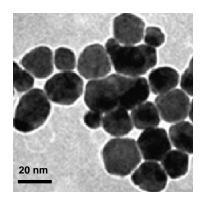
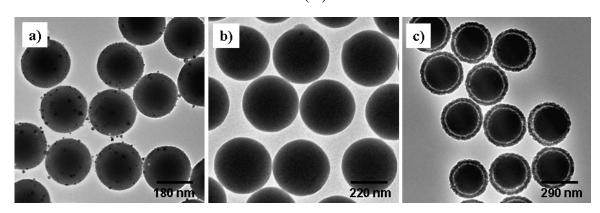
Supporting Information for

Silica Nanosphere-Supported Shaped Pd Nanoparticles Encapsulated with Nanoporous Silica Shell: Efficient and Recyclable Nanocatalysts

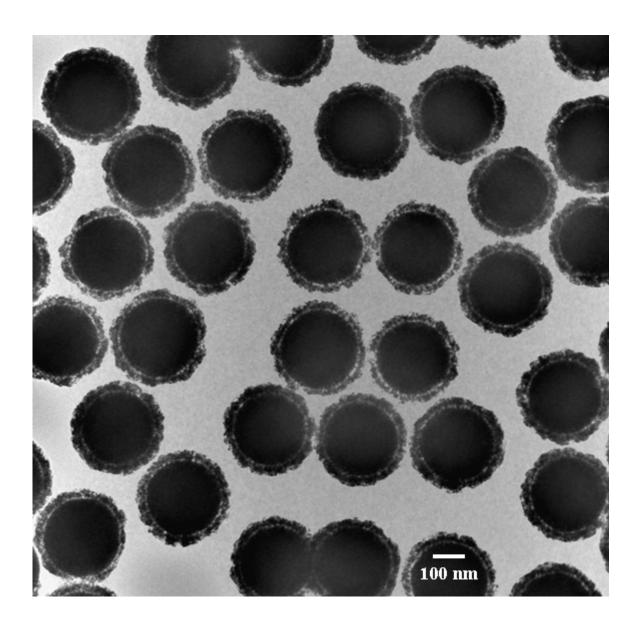
Yanfei W	Vang.a,b	Ankush	V. Biradar.	a,b Cole	T. Duncan,	c and T	Tewodros	Asefa
r antei w	vang,	Ankusn	v. Biradar,	Cole	1. Duncan,	ana i	lewoaros	Asera


^a Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway NJ 08854, USA

^b Department of Chemical Engineering and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA


^c Department of Chemistry, Syracuse University, CST 1-014, Syracuse, NY 13244, USA

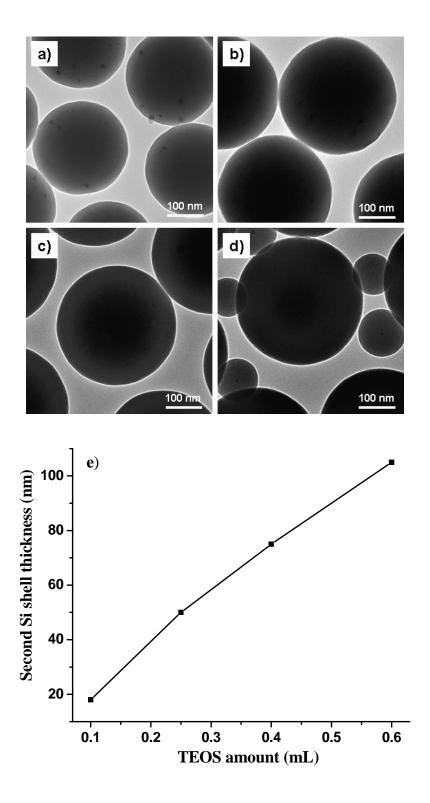
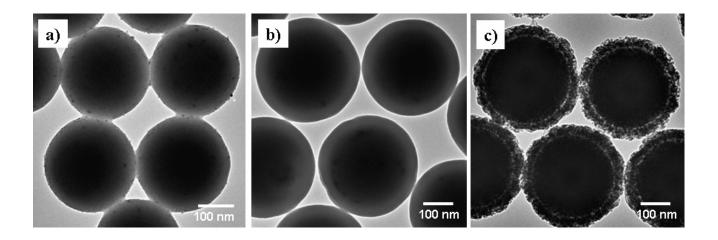
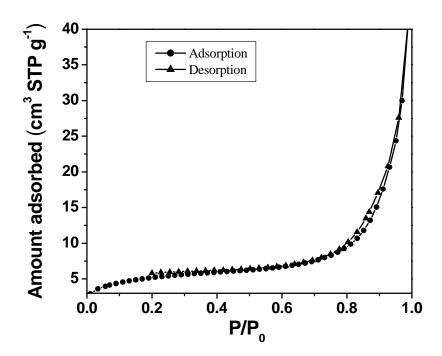
^{*}Corresponding Authors: E-mail: tasefa@rci.rutgers.edu (T.A.); Tel: 1-732-445-2970; Fax: 1-732-445-5312

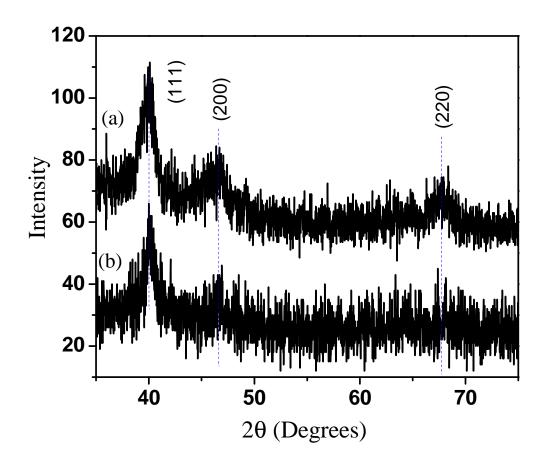

(I)

(II)

Figure S1. (I) TEM image of octahedral shaped Pd nanoparticles (~ 20 nm) synthesized by following the procedure reported by Lim et al. (B. Lim, Y. Xiong, Y. Xia, *Angew. Chem. Int. Ed.*, 2007, **46**, 9279). (II) Representative TEM images of (a) Pd nanoparticles (20 nm) supported on amino-modified silica nanospheres, (b) SiO₂/Pd-NP/SiO₂ core-shell-shell nanospheres, and (c) etched SiO₂/Pd-NP/Porous-SiO₂ core-shell-shell nanospheres.

Figure S2. A representative TEM image of etched SiO₂/Pd-NP/Porous SiO₂ core-shell-shell nanospheres (same sample as the one in Figure 1c except that this is more magnified).


Figure S3. Representative TEM images of SiO₂/Pd-NP/SiO₂ core-shell-shell nanospheres possessing different thickness of silica shell made by using different amounts of TEOS: (a) 0.1 mL TEOS, (b) 0.25 mL TEOS, (c) 0.4 mL TEOS, and (d) 0.6 mL TEOS. (e) A graph showing a linear relationship between the thickness of the silica shell and the amount of TEOS used at a given NH₄OH concentration and deposition time.

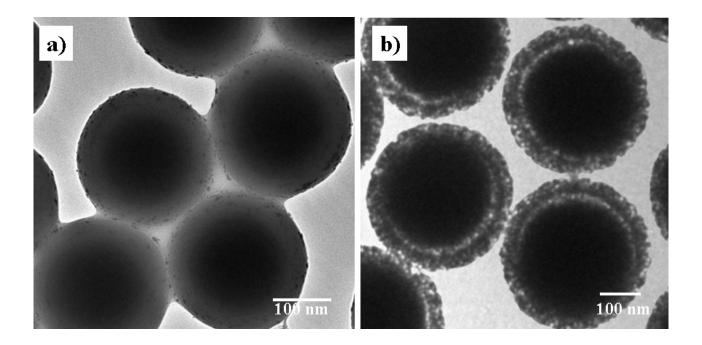

Figure S4. Large area TEM images of (a) Pd-NP (5 nm) supported onto amino-modified silica nanospheres, (b) $SiO_2/Pd-NP/SiO_2$ core-shell-shell nanospheres, and (c) etched $SiO_2/PdNP/Porous$ SiO_2 core-shell-shell nanospheres etched for 80 min.


Figure S5. Nitrogen adsorption–desorption isotherms of SiO₂/Pd-NP/Porous-SiO₂ nanospheres that were etched for 100 min.

Figure S6. Powder XRD patterns of (a) as-prepared SiO₂/Pd-NP core-shell nanospheres with 5 nm Pd-NP and (b) SiO₂/Pd-NP/Porous-SiO₂ core-shell-shell nanospheres etched for 80 min with 5 nm Pd-NP.

Figure S7. TEM images of (a) SiO₂/Pd-NP core-shell nanospheres and (b) SiO₂/Pd-NP/Porous-SiO₂ nanospheres after five cycles of catalysis in hydrogenation reaction.

Figure S8. ¹H NMR spectra of the Heck coupling product of trans-stilbene by using SiO₂/Pd-NP/Porous-SiO₂ nanospheres as catalyst in the Heck coupling reaction between iodobenzene and styrene. The formation of trans-stilbene was monitored by GC-MS, GC and ¹H NMR. ¹H NMR (CDCl₃, 300 MHz): δ 7.60-7.55 (m, 4H), 7.45-7.37 (m, 4H), 7.35-7.29 (m, 2H), and 7.18 (s, 2H).