- 1 -

## Highly Monodisperse Water-Dispersable Iron Oxide Nanoparticles for Biomedical Applications

Andreas Hofmann,<sup>a\*</sup> Steffen Thierbach,<sup>a</sup> Annetta Semisch,<sup>b</sup> Andrea Hartwig,<sup>b</sup> Matthias

Taupitz,<sup>c</sup> Eckart Rühl,<sup>a</sup> and Christina Graf<sup>a\*</sup>

## Supporting Information

1. Experimental details

a) The reaction schemes for the preparation of ligand (2) are shown in Figure 1-SI and Figure 2-SI.

Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2010



Figure 1-SI. Synthesis of the key intermediate 7.



Figure 2-SI. Synthesis of the hydroxamic acid 10.

*Synthesis of 11-(tert-butoxycarbonylamino)undecanoic acid (2)*: <sup>1</sup>**H-NMR** (400 MHz, CDCl<sub>3</sub>): δ / ppm = 10.88 (br, 1H), 4.54 (br, 1H), 3.08 (m, 2H), 2.33 (t, J = 7.5 Hz, 2H), 1.65-

1.58 (m, 2H), 1.50-1.37 (m, 2H), 1.43 (s, 9H), 1.34-1.20 (m, 12H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm = 179.3 (s), 156.0 (s), 79.0 (s), 40.6 (t), 34.0 (t), 30.0 (t), 29.4 (t), 29.24 (t), 29.16 (t), 29.1 (t), 29.0 (t), 28.4 (q, 3C), 26.7 (t), 24.7 (t).

Synthesis of benzyl-11-(tert-butoxycarbonylamino)undecanoate (3): m.p. 31-32 °C. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm = 7.36-7.32 (m, 5H), 5.11 (s, 2H), 4.53 (br, 1H), 3.11-3.06 (m, 2H), 2.34 (t, J = 7.5 Hz, 2H), 1.67-1.58 (m, 2H), 1.47-1.40 (m, 2H), 1.43 (s, 9H), 1.31-1.22 (m, 12H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm = 173.6 (s), 155.9 (s), 136.1 (s), 128.5 (d, 2C), 128.1 (d, 3C), 78.9 (s), 66.0 (t), 40.6 (t), 34.3 (t), 30.0 (t), 29.4 (t), 29.3 (t), 29.2 (t), 29.1 (t), 29.0 (t), 28.5 (q, 3C), 26.7 (t), 24.9 (t).

Synthesis of 11-[tert-butoxycarbonyl-[2-[2-(2-methoxyethoxy)ethoxy]ethyl]amino]undecanoic acid (4): <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm = 10.63 (br, 1H), 3.62-3.50 (m, 10H), 3.34 (s, 3H), 3.34-3.26 (m, 2H), 3.20-3.14 (m, 2H), 2.27 (t, J = 7.5 Hz, 2H), 1.62-1.54 (m, 2H), 1.48-1.38 (m, 2H), 1.41 (s, 9H), 1.31-1.14 (m, 12H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm = 179.4 (s), 178.8 (s), 79.3 (s), 71.8 (t), 70.5 (t), 70.4 (t), 70.3 (t), 69.5 (t), 58.9 (q), 47.9 (t), 46.6 (t), 34.2 (t), 29.4 (t), 29.3 (t, 3C), 29.1 (t), 29.0 (t), 28.4 (q, 3C), 26.7 (t), 24.8 (t).

Synthesisofbenzyl-11-[tert-butoxycarbonyl-[2-[2-(2-methoxyethoxy)ethoxy]ethyl]amino]undec-anoate (5): <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm= 7.33-7.27 (m, 5H), 5.07 (s, 2H), 3.64-3.49 (m, 10H), 3.34 (s, 3H), 3.37-3.27 (m, 2H), 3.22-3.16 (m, 2H), 2.31 (t, J = 7.5 Hz, 2H), 1.63-1.56 (m, 2H), 1.41 (s, 9H), 1.50-1.39 (m, 2H),1.29-1.19 (m, 12H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm = 173.7 (s), 155.5 (s), 136.0 (s),128.4 (d, 2C), 128.0 (d, 3C), 79.0 (s), 71.8 (t), 70.5 (t), 70.4 (t, 2C), 70.2 (t), 69.5 (t) 65.9 (t),58.9 (q), 48.2 (t), 46.6 (t), 34.3 (t), 29.4 (t), 29.2 (t, 2C), 29.1 (t), 29.0 (t), 28.3 (q, 3C), 26.7 (t), 24.9 (t). HR-MS (+ESI): m/z calculated for C<sub>30</sub>H<sub>51</sub>NNaO<sub>7</sub> ([M + Na]<sup>+</sup>): 560.3563. Found:560.3559.

Synthesis of benzyl 11-[2-[2-(2-methoxy)ethoxy]ethoxy]ethylamino]undecanoate (6): <sup>1</sup>H-

**NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm = 7.35-7.28 (m, 5H), 5.10 (s, 2H), 3.64-3.52 (m, 10H), 3.37 (s, 3H), 2.76 (t, J = 5.2 Hz, 2H), 2.58 (t, J = 7.3 Hz, 2H), 2.33 (t, J = 7.5 Hz, 2H), 1.71 (br, 1H), 1.65-1.58 (m, 2H), 1.50-1.42 (m, 2H), 1.33-1.15 (m, 12H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm = 173.6 (s), 136.1 (s), 128.5 (d, 2C), 128.1 (d, 3C), 71.9 (t), 70.6 (t), 70.5 (t), 70.4 (t), 70.2 (t), 66.0 (t), 59.0 (q), 50.0 (t), 49.3 (t), 34.3 (t), 30.1 (t), 29.5 (t), 29.4 (t), 29.3 (t), 29.2 (t), 29.0 (t), 27.3 (t), 24.9 (t).

Synthesis of benzyl 11-[(2-bromoacetyl)-[2-[2-(2-methoxyethoxy)ethoxy]ethyl]amino]undecanoate (7): <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm = 7.37-7.29 (m, 5H), 5.09 (s, 2H), 3.98 (s, 1H), 3.84 (s, 1H), 3.62-3.58 (m, 8H), 3.58-3.49 (m, 3H+2H), 3.38-3.29 (m, 3H), 3.362 + 3.359 (2 x s, 3H), 2.34 + 2.33 (t, J = 7.5 Hz, 2H), 1.66-1.47 (m, 4H), 1.32-1.18 (m, 12H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm = 173.59 (s), 173.55 (s), 176.3 (s), 166.5 (s), 136.0 (s, 2C), 128.4 (d, 4C), 128.1 (d, 6C), 71.84 (t), 71.81 (t), 70.74 (t), 70.53 (t, 2C), 70.45 (t), 70.43 (t), 70.38 (t), 68.78 (t), 68.75 (t), 66.0 (t, 2C), 59.0 (q, 2C), 50.1 (t), 48.4 (t), 46.26 (t), 46.20 (t), 34.2 (t, 2C), 29.4 (t, 2C), 29.24 (t, 2C), 29.22 (t, 2C), 29.1 (t, 2C), 29.00 (t), 28.99 (t), 27.3 (t), 27.1 (t), 26.70 (t, BrCH<sub>2</sub>), 26.67 (t, BrCH<sub>2</sub>), 26.3 (t), 24.84 (t), 24.82 (t). HR-MS (+ESI): m/z calculated for C<sub>27</sub>H<sub>44</sub>BrNNaO<sub>6</sub> ([M + Na]<sup>+</sup>): 580.2250. Found: 580.2251.

Synthesis of benzyl-11-[[2-[2-[3-(benzyloxycarbamoyl)-5-[2-[bis[2-[(11-benzyloxy-11-oxoundecyl)-[2-[2-(2-methoxyethoxy)ethoxy]ethyl]amino]-2-oxoethyl]amino]ethoxy]phenoxy]ethyl-[2-[(11-benzyloxy-11-oxo-undecyl)-[2-[2-(2methoxyethoxy)ethoxy]ethyl]amino]-2-oxo-ethyl]amino]acetyl]-[2-[2-(2methoxyethoxy)ethoxy]ethyl]amino]undecanoate (9): <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm = 10.71 (br, 1H), 7.45-7.41 (m, 2H), 7.34-7.23 (m, 23H), 7.10 (t, J = 13.1 Hz, 2H), 6.49 (s, 1H), 5.07 (s, 8H), 5.01 (s, 2H), 4.15-4.08 (m, 4H), 3.72-3.58 (m, 8H), 3.65-3.51 (m, 24H), 3.51-3.43 (m, 24H), 3.31 (s, 6H), 3.29 (s, 6H), 3.34-3.23 (m, 8H), 3.12-3.03 (m, 4H), 2.30 (t, J = 7.8 Hz, 8H), 1.63-1.55 (m, 8H), 1.52-1.42 (m, 8H), 1.28-1.16 (m, 48H). <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  / ppm = 173.4 (s, 4C), 170.42 (s, 1C), 170.34 (s, 1C), 170.25 (s, 1C), 170.21 (s, 1C), 164.9 (s, 1C), 159.7 (s, 2C), 136.0 (s, 4C), 135.7 (s, 1C), 133.8 (s, 1C), 129.0 (d, 2C), 128.3+128.23+128.20+127.9 (d, 23C), 105.9 (d, 1C), 105.6 (d, 2C), 77.9 (t, 1C), 71.75 (t, 2C), 71.72 (t, 2C), 70.5+70.37+70.34+70.18 (t, 12C), 69.24 (t, 2C), 69.08 (t, 2C), 67.05 (t, 2C), 65.88 (t, 4C), 58.83 (q, 2C), 58.77 (q, 2C), 56.3 (t, 1C), 56.2 (t, 1C), 55.72 (t, 1C), 55.70 (t, 1C), 53.3 (t, 2C), 48.4 (t, 2C), 46.7 (t, 2C), 46.3 (t, 2C), 45.6 (t, 2C), 34.1 (t, 4C), 29.41+29.37+29.27+29.21+29.06+28.94 (t, 20C), 28.76 (t, 2C), 27.51 (t, 2C), 26.93 (t, 2C), 26.73 (t, 2C), 24.8 (t, 4C). HR-MS (+ESI): m/z calculated for C<sub>126</sub>H<sub>196</sub>N<sub>7</sub>O<sub>28</sub> ([M + H]<sup>+</sup>): 2256.4156. Found: 2256.4147. HR-MS (+ESI): m/z calculated for C<sub>126</sub>H<sub>195</sub>N<sub>7</sub>Na<sub>2</sub>O<sub>28</sub> ([M + 2Na]<sup>2+</sup>): 1150.6934. Found: 1150.6896.

Synthesis of 11-[[2-[2-[3-[2-[bis[2-[(11-hydroxy-11-oxo-undecyl)-[2-[2-(2-methoxyethoxy)-ethoxy]-ethyl]-amino]-2-oxo-ethyl]amino]ethoxy]-5-(hydroxycarbamoyl)phenoxy]ethyl-[2-[(11-hydroxy-11-oxo-undecyl)-[2-[2-(2-methoxyethoxy)ethoxy]ethyl]amino]-2-oxoethyl]amino]acetyl]-[2-[2-(2-methoxyethoxy)ethoxy]ethyl]amino]undecanoic acid (10): $<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>/DMSO-d<sub>6</sub>): <math>\delta$  / ppm = 8.9 (br s, 1H), 6.96 (br s, 2H), 6.36 (br s, 1H), 4.00-3.80 (m, 4H), 3.65-3.25 (m, 48H), 3.25-3.05 (m, 12H+8H), 3.05-2.85 (m, 4H), 2.10 (t, J = 7.4 Hz, 8H), 1.49-1.29 (m, 8H+8H), 1.28-0.95 (m, 48H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>/DMSO-d<sub>6</sub>):  $\delta$  / ppm = 176.4 (s, 4C), 170.55 (s, 1C), 170.48 (s, 1C), 170.40 (s, 1C), 170.30 (s, 1C), 164.3 (s, 1C), 159.8 (s, 2C), 133.8 (s, 1C), 105.9 (d, 1C), 105.6 (d, 2C), 71.4 (t, 4C), 70.4+70.1+70.34+70.05+70.00+69.9 (t, 12C), 68.9 (t, 2C), 68.7 (t, 2C), 66.6 (t, 2C), 58.52 (q, 2C), 58.49 (q, 2C), 56.1 (t, 1C), 55.9 (t, 1C), 55.44 (t, 1C), 55.36 (t, 1C), 52.9 (t, 2C), 48.1 (t, 2C), 46.5 (t, 2C), 46.0 (t, 2C), 45.4 (t, 2C), 33.8 (t, 4C), 29.9+29.0+28.9+28.8+28.6 (t, 20C), 28.4 (t, 2C), 27.1 (t, 2C), 26.6 (t, 2C), 26.4 (t, 2C), 24.5 (t, 4C). **HR-MS (+ESI)**: m/z calculated for  $C_{91}H_{167}N_7O_{28}$  ([M + 2H]<sup>2+</sup>): 903.5940. Found: 903.5912. **HR-MS (+ESI)**: m/z calculated for  $C_{91}H_{166}N_7NaO_{28}$  ([M + H + Na]<sup>2+</sup>): 914.5850. Found: 914.5797.

b) Materials: The solvents (CHCl<sub>3</sub>, DMF, Et<sub>2</sub>O, ethyl acetate, hexane, methanol, THF) were purchased in technical quality, purified by distillation, and dried according to standard procedures<sup>1</sup> if mentioned as dry solvent. 11-Aminoundecanoic acid (Fluka, 98%), benzyl bromide (Acros, 98%), bromoacetyl bromide (Fluka, 98%), Di-tert-butyldicarbonate (ABCR, 97%), DMEM and DMEM/FCS (Sigma-Aldrich), HCl<sub>aq</sub> (p.a.), Et<sub>3</sub>N (Acros, 99%), NaCl (Grüssing, 99.5%), NaH (Adrich, 60% in mineral oil), NaHCO<sub>3</sub> (Fluka, 99.5%), Na<sub>2</sub>SO<sub>4</sub> (Fluka, 99%), tetrabutylammonium iodide (Fluka, 99%), trifluoroacetic acid (Acros, 99%), Pd/C (Fluka, 10% Pd), <sup>*i*</sup>Pr<sub>2</sub>NEt (ABCR, 99%).

The preparation of compound  $\mathbf{8}$  is described in reference <sup>2</sup>.

## 2. Spectroscopic results

a) An infrared spectrum of the oleic acid protected iron oxide nanoparticles is shown in **Figure 3-SI**. The IR vibrations of the iron oxide nanocrystals with oleic acid as well as those of the nanoparticles functionalized with the ligands L-1 to L-5 are presented in **Table SI-1**.

Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2010



Figure 3-SI. Infrared spectrum of the oleic acid capped Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NP-OA).

It cannot be concluded without any ambiguity if the double bond in oleic acid is stable under the experimental conditions. Considering the high temperatures during the growth process saturation of the molecule cannot be fully excluded. A similar discussion was given by Willis et al. for maghemite particles, which were synthesized from iron pentacarbonyl and oleic acid at  $350 \,^{\circ}\text{C.}^{3}$ 

| sample | wave number [cm <sup>-1</sup> ] | explanation                              |
|--------|---------------------------------|------------------------------------------|
| NP-OA  | 3004                            | v <sub>vinyl</sub> C-H (free oleic acid) |
|        | 2954                            | v <sub>as</sub> CH <sub>3</sub>          |
|        | 2925                            | v <sub>a</sub> CH <sub>2</sub>           |
|        | 2855                            | v <sub>s</sub> CH <sub>2</sub>           |
|        | 1711                            | v C-O (free oleic acid)                  |
|        | 1466                            | $\delta_s$ C-H                           |
|        | 1377                            | $\delta_s  CH_3$                         |
|        | 966                             | $\delta_{oop}$ C=C (free oleic acid)     |

Table SI-1. IR vibrations of the iron oxide nanocrystals.<sup>4-10</sup>

Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2010 - 2

| 8 | - |
|---|---|
| 0 | - |

|                  | 722       | r CH <sub>2</sub>                |
|------------------|-----------|----------------------------------|
| NP-1, NP-2, NP-3 | 1726      | carboxylic acid (NP-2 and NP-3)  |
|                  | 1654-1650 | Amid-I (v C=O; v C-N)            |
|                  | 1580-1500 | Amid-II (ν C=O; ν C-N; δ N-H)    |
|                  | 1340-1330 | Amid-III (δ N-H rocking)         |
|                  | 1200-1050 | alkyl ether                      |
|                  | 1170      | v <sub>as</sub> C-O-C            |
|                  | 1110      | v <sub>as</sub> C-O-C            |
|                  | 985       | $\gamma_{\rm oop}$ C-H           |
| NP-4             | 1700      | carboxylic acid functionality    |
|                  | 1255      | v <sub>as</sub> C-O-C            |
|                  | 1250      | $\delta_{as,s}$ C-H (aryl ether) |
|                  | 1022      | v <sub>as</sub> C-O-C            |
| NP-5             | 1706      | carboxylic acid functionality    |
|                  | 1583      | hydroxamic acid group            |
|                  | 1524      | hydroxamic acid group            |
|                  | 1428      | hydroxamic acid group            |

b) The time dependence of the absorption spectra of sample NP-3 in 0.05 M HCl solution is shown in Figure 4-SI.



**Figure 4-SI.** The time dependence of the measured absorption spectra is shown for NP-3 in 0.05 M HCl solution. A lamp change in the spectrometer at 380 nm is causing a step in all spectra.

c) The Raman spectrum of the oleic acid protected iron oxide nanoparticles is compared to the spectra of sample NP-3 and magnetite (bulk) in **Figure 5-SI**.

Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2010 - 10 -





Figure 5-SI. Raman spectra of the oleic acid capped iron oxide particles (NP-OA) and of iron oxide particles after a ligand exchange reaction with ligand L-3 (see Figure 1, NP-3). A Raman spectrum of pure bulk magnetite (Fe<sub>3</sub>O<sub>4</sub>) is included for a comparison. The dominant features are assigned to the spectra as described in ref. 64 in the article for bulk magnetite.

## References

- 1. Gattermann, L.; Wieland, T., Die Praxis des organischen Chemikers. de Gruyter: Berlin, 1982.
- 2. Hofmann, A.; Graf, C.; Kung, S.-H.; Kim, M.; Peng, X.; El-Aama, R.; E. Rühl, Synthesis 2010, accepted for publication.
- 3. Willis, A. L.; Turro, N. J.; O'Brien, S., Chem. Mater. 2005, 17, 5970.
- C. Fang, N. Bhattarai, C. Sun and M. Zhang, Small, 2009, 5, 1637. 4.
- A. L. Willis, N. J. Turro and S. O'Brien, Chem. Mater. , 2005, 17, 5970. 5.
- C. Yee, G. Kataby, A. Ulman, T. Prozorov, H. White, A. King, M. Rafailovich, J. 6. Sokolov and A. Gedanken, Langmuir 1999, 15, 7111.
- E. Tombacz, D. Bica, A. Hajdu, E. Illes, A. Majzik and L. Vakas, J. Phys.: Condens. 7. Matter, 2008, 20, 204103.
- 8. L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein and B. Dragnea, Chem. Mater. , 2007, 19, 3624.
- Y. Lu and J. D. Miller, J. Colloid. Interface Sci., 2002, 256, 41. 9.
- H. Günzler and H.-U. Gremlich, IR-Spektroskopie, Wiley-VCH, Weinheim (Germany) 10. 2003.