Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010 Supplementary Information

Assembly of Magnetite Nanoparticles into Spherical Mesoporous Aggregates with a 3-D Wormhole-Like Porous Structure

Byong Yong Yu, and Seung-Yeop Kwak*

Department of Materials Science and Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151–744, Korea

yby3735@snu.ac.kr

* To whom correspondence should be addressed. *E-mail:* sykwak@snu.ac.kr.

Tel: +82-2-880-8365, *Fax*: +82-2-885-1748

Supplementary Material (ESI) for Journal of Materials Chemistry

Figure S1. Schematic diagram for a unit cell of magnetite (Fe₃O₄): \bigcirc Fe³⁺ (tetrahedral coordination), $(\bigcirc$ Fe²⁺/Fe³⁺ (octahedral coordination), \bigcirc oxygen

Figure S2. TGA and DSC curves of as-prepared mesoporous magnetite before calcination

2θ (deg)	Intensity (a.u.)	h k l	2θ (deg)	Intensity (a.u.)	h k l
18.269	8	111	62.515	40	440
30.095	30	220	65.743	2	531
35.422	100	311	70.924	4	620
37.052	8	222	73.948	10	533
43.052	20	400	74.960	4	622
53.391	10	422	78.929	2	444
56.942	30	511	86.617	4	642

Table S1. The standard 2θ values and relative intensity for magnetite (Fe₃O₄) with respectivediffraction planes (JCPDS file, No. 19-0629)

Ref. Natl. Bur. Stand. (U.S.) Monogr. 1967, 25, 5, 31

Table S2. The standard 2θ values and relative intensity for maghemite (γ -Fe₂O₃) with respectivediffraction planes (JCPDS file, No. 04-0755)

2θ (deg)	Intensity (a.u.)	h k l	2θ (deg)	Intensity (a.u.)	h k l
18.392	5	111	43.472	24	400
21.238	1	200	53.886	12	422
23.836	5	210	57.166	33	511
26.110	2	211	59.597	<1	520
30.272	34	220	60.457	10	521
32.172	19	300	62.726	53	440
33.928	1	310	65.185	1	530
35.597	100	311	71.401	7	620
37.280	1	222	74.677	11	533
38.783	6	320	75.372	3	622

Ref. R. Haul and T. Schoon. Z. Phys. Chem. 1939, 44, 216.

Figure S3. X-ray diffraction patterns of mesoporous magnetite and the standard JCPDS patterns for magnetite and maghemite

Supplementary Material (ESI) for Journal of Materials Chemistry

This journal is (c) The Royal Society of Chemistry 2010

Table S3. FWHM values of the main diffraction peaks and crystallite size for mesoporous magnetite

h k l	Position (2θ)	FWHM (2 <i>θ</i>)	Crystallite size (nm)
220	30.153	1.461	5.570
3 1 1	35.461	1.432	5.761
400	43.097	1.451	5.823
422	53.553	1.454	6.053
511	56.972	1.547	5.779
440	62.671	1.596	5.764

Supplementary Material (ESI) for Journal of Materials Chemistry

Figure. S4 ⁵⁷Fe-Mössbauer spectra of the maghemite (γ-Fe₂O₃) at room temperature (full cirles: experimental data; solid lines: best fit)

The maghemite sample (nanopowder - avg. part. size: 5~25 nm) was purchased from Sigma-Aldrich (CAS number: *1309-37-1*).

Figure S5. Intensity auto-correlation function (ACF), $G_2(\tau)$ in DLS

The second-order correlation function $G_2(\tau)$ can be expressed in the first-order correlation function, $G_1(\tau)$ according to the Siegert relation: $G_2(\tau) = B(1 + \beta G_1(\tau)^2)$, where *B* is the baseline constant and β is a coherence constant. In the case of a perfect setup, both equal unity. In the case of single-exponential decay, $G_1(\tau)$ can be expressed in terms of a typical decay rate, Γ and time, t; $G_1(\tau) = \exp(-\Gamma\tau)$. The apparent translational diffusion coefficient, *D* is given by equation: $\Gamma = Dq^2$, where *q* is the magnitude of the scattering vector; $q = 4\pi n \sin(\theta/2)/\lambda$, where *n* is the refractive index of the solvent, θ is the scattering angle, and λ is the wavelength of the incident light. For spherical particles, the translational diffusion coefficient can be related to the hydrodynamic radius, *R* according to the Stokes-Einstein equation: $D = k_B T / 6\pi \eta R$, where *D* is the diffusion coefficient of the Brownian motion of spherical particles, k_B is the Boltzmann constant, *T* is the absolute temperature, and η is the viscosity of the solvent. The hydrodynamic radius distribution of particles, *G*(R) was estimated using the COTIN algorithm, which is conventionally used to determine the inverse Laplace transform of the measured amplitude autocorrelation function.^{1,2}

- (1) R. Finsy, Adv. Colloid Interfac. 1994, 52, 79.
- (2) I. K. Voets, A. De Keizer, M. A. Cohen Stuart and P. De Waard, *Macromolecules* 2006, **39**, 5952.

Supplementary Material (ESI) for Journal of Materials Chemistry

Figure S6. Representative FE-SEM images of synthesized magnetite particles under various reaction conditions: (a) with stirring, (b) low reaction temperature (below 40 °C), (c) high triblock copolymer concentration, (d) without the triblock copolymer, (e) decreased triblock copolymer/precursor molar ratio, and (f) decreased reaction time